scholarly journals Comparative Analysis of Internal Climate Variability and Model Uncertainty on Indian Summer Monsoon Extreme Precipitation

2020 ◽  
Author(s):  
Udit Bhatia ◽  
Divya Upadhyay ◽  
Pranab Kumar Mohapatra
2014 ◽  
Vol 44 (7-8) ◽  
pp. 1789-1800 ◽  
Author(s):  
S. C. van Pelt ◽  
J. J. Beersma ◽  
T. A. Buishand ◽  
B. J. J. M. van den Hurk ◽  
J. Schellekens

2021 ◽  
pp. 1-28
Author(s):  
Jasti S. Chowdary ◽  
Shang-Ping Xie ◽  
Ravi S. Nanjundiah

2021 ◽  
pp. 131-154
Author(s):  
S. Chakraborty ◽  
Aasif M. Lone ◽  
Anant Parekh ◽  
P.M. Mohan

2013 ◽  
Vol 9 (6) ◽  
pp. 2451-2458 ◽  
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1868–2007. The reconstructed MB is characterized mainly by ablation over the past 140 yr, and typical melting periods occurred in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) were characterized by accumulation. These variations can be validated by the terminus retreat velocity of Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August–September all-India monsoon rainfall (AIR) (r1871-2008 = −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation does not affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 248
Author(s):  
Shang-Min Long ◽  
Gen Li

The projected ISM precipitation changes under low-emission scenarios, Representative Concentration Pathway 2.6 (RCP2.6) and Shared Socioeconomic Pathway 1-2.6 (SSP1-2.6), are investigated by outputs from models participating in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). Based on the high-emission scenarios like RCP8.5, the Intergovernmental Panel on Climate Change Fifth Assessment Report suggests a wetter Indian summer monsoon (ISM) by the end of 21st century. Although the multi-model ensemble mean (MME) ISM precipitation under RCP2.6 and SSP1-2.6 is still projected to increase over 2050–2099 referenced to 1900–1949, the intermodel spread of the ISM precipitation change is tremendous in both CMIPs. Indeed, the signal-to-noise ratio (SNR) of ISM precipitation change, defined as the MME divided by its intermodel standard deviation, is even below 1 under the low-emission scenarios. This casts doubts on a future wetter ISM in a warmer climate. Moisture budget analyses further show that most of the model uncertainty in ISM precipitation change is caused by its dynamical component from the atmospheric circulation change. As expected, the interhemispheric surface warming contrast is essential in causing the intermodel differences in ISM circulation and precipitation changes under low-emission scenarios. In addition, the projected wetter ISM is prominently enhanced from CMIP5 to CMIP6, along with reduced model uncertainty. However, the resultant increased SNR in CMIP6 is still low in most ISM regions. The results imply that ISM precipitation change is highly uncertain under low-emission scenarios, which greatly challenges the decisions-making in adaptation policies for the densely populated South Asian countries.


2013 ◽  
Vol 9 (4) ◽  
pp. 3663-3680
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1865–2007. The reconstructed MB is characterized mainly by ablation over the past 143 yr, and typical melting periods occurs in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) is characterized by accumulation. These variations can be validated by the terminus retreat velocity of the Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August-September all-Indian monsoon precipitation (AIR) (r1871–2008= −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation doesn't affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.


2016 ◽  
Author(s):  
Melanie Perello ◽  
◽  
Broxton W. Bird ◽  
Yanbin Lei ◽  
Pratigya J. Polissar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document