scholarly journals Tree-ring-inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability

2013 ◽  
Vol 9 (6) ◽  
pp. 2451-2458 ◽  
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1868–2007. The reconstructed MB is characterized mainly by ablation over the past 140 yr, and typical melting periods occurred in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) were characterized by accumulation. These variations can be validated by the terminus retreat velocity of Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August–September all-India monsoon rainfall (AIR) (r1871-2008 = −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation does not affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.

2013 ◽  
Vol 9 (4) ◽  
pp. 3663-3680
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1865–2007. The reconstructed MB is characterized mainly by ablation over the past 143 yr, and typical melting periods occurs in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) is characterized by accumulation. These variations can be validated by the terminus retreat velocity of the Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August-September all-Indian monsoon precipitation (AIR) (r1871–2008= −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation doesn't affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.


2020 ◽  
pp. 1-9
Author(s):  
Chenxi Xu ◽  
Haifeng Zhu ◽  
S.-Y. Simon Wang ◽  
Feng Shi ◽  
Wenling An ◽  
...  

Abstract We present a long-term seasonal tree ring cellulose oxygen isotope (δ18Oc) time series created by analyzing four segments (S1, S2, S3, and S4) per year during the period of 1951–2009 from southeastern Tibetan Plateau. This intraseasonal δ18Oc reveals the onset and mature phase of the summer monsoon precipitation in this region. Analysis indicates that the δ18Oc of S1 has the strongest correlation with precipitation during the regional monsoon onset (29–33 pentads, May 21–June 10, r = −0.69), and the δ18Oc values for S2, S3, and S4 correlate strongly with June, July, and August precipitation, respectively. Combined δ18Oc of S2, S3, and S4 shows the most robust correlation (r = −0.82) with the mature-phase monsoon precipitation (June-July-August, JJA), passing rigorous statistical tests for calibration and verification in dendroclimatology. These results demonstrate the feasibility in using long-term intraseasonal δ18Oc to reconstruct the Asian summer monsoon's intraseasonal variations.


2021 ◽  
Author(s):  
Achille Jouberton ◽  
Thomas E. Shaw ◽  
Evan Miles ◽  
Shaoting Ren ◽  
Wei Yang ◽  
...  

&lt;p&gt;Glaciers are key components of the water towers of Asia and as such are relied upon by large downstream communities for domestic, agricultural and industrial uses. They have experienced considerable shrinking over the last decades, with some of the highest rates of mass loss observed in the south-eastern part of the Tibetan Plateau, where mass loss is also accelerating.&amp;#160; Despite these rapid changes, Tibetan glaciers&amp;#8217; changing role in catchment hydrology remains largely unknown. Parlung No.4 Glacier is considered as a benchmark glacier in this region, since its meteorology, surface energy fluxes and mass-balance have been examined since 2006. It is a maritime glacier with a spring (April-May) accumulation regime , which is followed by a period of ablation during the Indian Summer Monsoon (typically June-September). Here, we conduct a glacio-hydrological study over a period of five decades (1978-2018) using a fully distributed model for glacier mass balance and runoff simulation (TOPKAPI-ETH). We force the model with ERA5-Land and China Meteorological Forcing Dataset (CMFD) climate reanalysis downscaled to a local weather station to reconstruct meteorological time series at an hourly resolution. TOPKAPI-ETH is calibrated and validated with automatic weather station data, discharge measurements, geodetic mass balance, stake measurements and snow cover data from MODIS. We find a very clear acceleration in mass loss from 2000 onwards, which is mostly explained by an increase in temperature. This influence however was initially compensated by an increase in precipitation until the 2000&amp;#8217;s, which attenuated the negative trend. Our results also indicate that the increase in the liquid-solid precipitation ratio has reduced the amount of seasonal accumulation, exacerbating annual mass loss. We demonstrate that the southern westerlies and the associated spring precipitation have as much influence on the glacier mass balance and catchment discharge as the Indian Summer Monsoon, by controlling seasonal snowpack development, which simultaneously provides mass to the glacier and protects it from melting in the early stage of the monsoon.&lt;/p&gt;


2018 ◽  
Vol 14 (5) ◽  
pp. 653-664 ◽  
Author(s):  
Chenxi Xu ◽  
Masaki Sano ◽  
Ashok Priyadarshan Dimri ◽  
Rengaswamy Ramesh ◽  
Takeshi Nakatsuka ◽  
...  

Abstract. We have constructed a regional tree-ring cellulose oxygen isotope (δ18O) record for the northern Indian sub-continent based on two new records from northern India and central Nepal and three published records from northwestern India, western Nepal and Bhutan. The record spans the common interval from 1743 to 2008 CE. Correlation analysis reveals that the record is significantly and negatively correlated with the three regional climatic indices: all India rainfall (AIR; r  =  −0.5, p  <  0.001, n  =  138), Indian monsoon index (IMI; r  =  −0.45, p  <  0.001, n  =  51) and the intensity of monsoonal circulation (r  =  −0.42, p  <  0.001, n  =  51). The close relationship between tree-ring cellulose δ18O and the Indian summer monsoon (ISM) can be explained by oxygen isotope fractionation mechanisms. Our results indicate that the regional tree-ring cellulose δ18O record is suitable for reconstructing high-resolution changes in the ISM. The record exhibits significant interannual and long-term variations. Interannual changes are closely related to the El Niño–Southern Oscillation (ENSO), which indicates that the ISM was affected by ENSO in the past. However, the ISM–ENSO relationship was not consistent over time, and it may be partly modulated by Indian Ocean sea surface temperature (SST). Long-term changes in the regional tree-ring δ18O record indicate a possible trend of weakened ISM intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land–ocean thermal contrasts since 1820 CE.


2016 ◽  
Author(s):  
Melanie Perello ◽  
◽  
Broxton W. Bird ◽  
Yanbin Lei ◽  
Pratigya J. Polissar ◽  
...  

2021 ◽  
pp. 1-54

Abstract It has been suggested that summer rainfall over Central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM based on the results of statistical analysis and numerical simulation. Precipitation in CA is is dominated by two water vapor transport branches from the south which are related to the two primary modes of anomalous diabatic heating distribution related to the TP and ISM precipitation, that is, the “+-” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+-+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious mid-latitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over south Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative South Indian Ocean Dipole (NSIOD) in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport and an anomalous Hadley cell circulation. The results indicate a reliable prediction reference for precipitation in CA.


2021 ◽  
pp. 1-28
Author(s):  
Jasti S. Chowdary ◽  
Shang-Ping Xie ◽  
Ravi S. Nanjundiah

2019 ◽  
Vol 46 (14) ◽  
pp. 8431-8441 ◽  
Author(s):  
Piyushkumar N. Patel ◽  
Ritesh Gautam ◽  
Takuro Michibata ◽  
Harish Gadhavi

Sign in / Sign up

Export Citation Format

Share Document