scholarly journals Assessment of Streamflow Forecast Skill in the Truckee River Basin

2021 ◽  
Author(s):  
Christine Albano ◽  
Michael Dettinger ◽  
Michael Imgarten
2019 ◽  
Vol 23 (3) ◽  
pp. 1453-1467 ◽  
Author(s):  
Bart van Osnabrugge ◽  
Remko Uijlenhoet ◽  
Albrecht Weerts

Abstract. Medium-term hydrologic forecast uncertainty is strongly dependent on the forecast quality of meteorological variables. Of these variables, the influence of precipitation has been studied most widely, while temperature, radiative forcing and their derived product potential evapotranspiration (PET) have received little attention from the perspective of hydrological forecasting. This study aims to fill this gap by assessing the usability of potential evaporation forecasts for 10-day-ahead streamflow forecasting in the Rhine basin, Europe. In addition, the forecasts of the meteorological variables are compared with observations. Streamflow reforecasts were performed with the daily wflow_hbv model used in previous studies of the Rhine using the ECMWF 20-year meteorological reforecast dataset. Meteorological forecasts were compared with observed rainfall, temperature, global radiation and potential evaporation for 148 subbasins. Secondly, the effect of using PET climatology versus using observation-based estimates of PET was assessed for hydrological state and for streamflow forecast skill. We find that (1) there is considerable skill in the ECMWF reforecasts to predict PET for all seasons, and (2) using dynamical PET forcing based on observed temperature and satellite global radiation estimates results in lower evaporation and wetter initial states, but (3) the effect on forecasted 10-day streamflow is limited. Implications of this finding are that it is reasonable to use meteorological forecasts to forecast potential evaporation and use this is in medium-range streamflow forecasts. However, it can be concluded that an approach using PET climatology is also sufficient, most probably not only for the application shown here, but also for most models similar to the HBV concept and for moderate climate zones. As a by-product, this research resulted in gridded datasets for temperature, radiation and potential evaporation based on the Makkink equation for the Rhine basin. The datasets have a spatial resolution of 1.2×1.2 km and an hourly time step for the period from July 1996 through 2015. This dataset complements an earlier precipitation dataset for the same area, period and resolution.


Forecasting ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 230-247
Author(s):  
Ganesh R. Ghimire ◽  
Sanjib Sharma ◽  
Jeeban Panthi ◽  
Rocky Talchabhadel ◽  
Binod Parajuli ◽  
...  

Improving decision-making in various areas of water policy and management (e.g., flood and drought preparedness, reservoir operation and hydropower generation) requires skillful streamflow forecasts. Despite the recent advances in hydrometeorological prediction, real-time streamflow forecasting over the Himalayas remains a critical issue and challenge, especially with complex basin physiography, shifting weather patterns and sparse and biased in-situ hydrometeorological monitoring data. In this study, we demonstrate the utility of low-complexity data-driven persistence-based approaches for skillful streamflow forecasting in the Himalayan country Nepal. The selected approaches are: (1) simple persistence, (2) streamflow climatology and (3) anomaly persistence. We generated the streamflow forecasts for 65 stream gauge stations across Nepal for short-to-medium range forecast lead times (1 to 12 days). The selected gauge stations were monitored by the Department of Hydrology and Meteorology (DHM) Nepal, and they represent a wide range of basin size, from ~17 to ~54,100 km2. We find that the performance of persistence-based forecasting approaches depends highly upon the lead time, flow threshold, basin size and flow regime. Overall, the persistence-based forecast results demonstrate higher forecast skill in snow-fed rivers over intermittent ones, moderate flows over extreme ones and larger basins over smaller ones. The streamflow forecast skill obtained in this study can serve as a benchmark (reference) for the evaluation of many operational forecasting systems over the Himalayas.


2008 ◽  
Vol 9 (1) ◽  
pp. 132-148 ◽  
Author(s):  
Andrew W. Wood ◽  
John C. Schaake

Abstract When hydrological models are used for probabilistic streamflow forecasting in the Ensemble Streamflow Prediction (ESP) framework, the deterministic components of the approach can lead to errors in the estimation of forecast uncertainty, as represented by the spread of the forecast ensemble. One avenue for correcting the resulting forecast reliability errors is to calibrate the streamflow forecast ensemble to match observed error characteristics. This paper outlines and evaluates a method for forecast calibration as applied to seasonal streamflow prediction. The approach uses the correlation of forecast ensemble means with observations to generate a conditional forecast mean and spread that lie between the climatological mean and spread (when the forecast has no skill) and the raw forecast mean with zero spread (when the forecast is perfect). Retrospective forecasts of summer period runoff in the Feather River basin, California, are used to demonstrate that the approach improves upon the performance of traditional ESP forecasts by reducing errors in forecast mean and improving spread estimates, thereby increasing forecast reliability and skill.


2017 ◽  
Vol 4 (11) ◽  
pp. 171253 ◽  
Author(s):  
Mary M. Peacock ◽  
Evon R. Hekkala ◽  
Veronica S. Kirchoff ◽  
Lisa G. Heki

Currently one small, native population of the culturally and ecologically important Lahontan cutthroat trout ( Oncorhynchus clarkii henshawi , LCT, Federally listed) remains in the Truckee River watershed of northwestern Nevada and northeastern California. The majority of populations in this watershed were extirpated in the 1940s due to invasive species, overharvest, anthropogenic water consumption and changing precipitation regimes. In 1977, a population of cutthroat trout discovered in the Pilot Peak Mountains in the Bonneville basin of Utah, was putatively identified as the extirpated LCT lacustrine lineage native to Pyramid Lake in the Truckee River basin based on morphological and meristic characters. Our phylogenetic and Bayesian genotype clustering analyses of museum specimens collected from the large lakes (1872–1913) and contemporary samples collected from populations throughout the extant range provide evidence in support of a genetically distinct Truckee River basin origin for this population. Analysis of museum samples alone identified three distinct genotype clusters and historical connectivity among water bodies within the Truckee River basin. Baseline data from museum collections indicate that the extant Pilot Peak strain represents a remnant of the extirpated lacustrine lineage. Given the limitations on high-quality data when working with a sparse number of preserved museum samples, we acknowledge that, in the end, this may be a more complicated story. However, the paucity of remnant populations in the Truckee River watershed, in combination with data on the distribution of morphological, meristic and genetic data for Lahontan cutthroat trout, suggests that recovery strategies, particularly in the large lacustrine habitats should consider this lineage as an important part of the genetic legacy of this species.


2018 ◽  
Author(s):  
Bart van Osnabrugge ◽  
Remko Uijlenhoet ◽  
Albrecht Weerts

Abstract. Medium term hydrologic forecast uncertainty is strongly dependent on the forecast quality of meteorological variables. Of these variables, the influence of precipitation has been studied most widely, while temperature, radiative forcing and their derived product potential evapotranspiration (PET) have received little attention from the perspective of hydrological forecasting. This study aims to fill this gap by assessing the usability of potential evaporation forecasts for 10-day-ahead streamflow forecasting in the Rhine basin, Europe. In addition, the forecasts of the meteorological variables are compared with observations. Streamflow reforecasts were performed with the daily wflow_hbv model used in previous studies of the Rhine using the ECMWF 20-year meteorological reforecast dataset. Meteorological forecasts were compared with observed rainfall, temperature, global radiation and potential evaporation for 148 subbasins. Secondly, the effect of using PET climatology versus using observation-based estimates of PET was assessed for hydrological state and for streamflow forecast skill. We find that: (1) there is considerable skill in the ECMWF reforecasts to predict PET for all seasons, (2) using dynamical PET forcing based on observed temperature and satellite global radiation estimates results in lower evaporation and wetter initial states, but (3) the effect on forecasted 10-day streamflow is limited. Implications of this finding are that it is reasonable to use meteorological forecasts to forecast potential evaporation and use this is in medium-range streamflow forecasts. However, it can be concluded that an approach using PET climatology is also sufficient, most probably not only for the application shown here, but for most models similar to the HBV concept and for moderate climate zones. As a by-product, this research resulted in gridded datasets for temperature, radiation and potential evaporation based on the Makkink equation for the Rhine basin. The datasets have a spatial resolution of 1.2 × 1.2 km and an hourly timestep for the period from July 1996 through 2015. This dataset complements an earlier precipitation dataset for the same area, period and resolution.


Fact Sheet ◽  
1997 ◽  
Author(s):  
Steven N. Berris ◽  
Glen Hess ◽  
R. Lynn Taylor ◽  
Larry R. Bohman

Fact Sheet ◽  
1997 ◽  
Author(s):  
Glen W. Hess ◽  
Rhea P. Williams
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document