Study and analysis of Irrigation furrow measurement, Flow rate Soil moisture distribution and Gross depth at Melka Hida small scale irrigation scheme

2021 ◽  
Author(s):  
Kishor Kolhe ◽  
Duba Chena
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yuki Kojima ◽  
Kazuo Oki ◽  
Kosuke Noborio ◽  
Masaru Mizoguchi

The ALOS (advanced land observing satellite) has an active microwave sensor, PALSAR (phased array L-band synthetic aperture radar), which has a fine resolution of 6.5 m. Because of the fine resolution, PALSAR provides the possibility of estimating soil moisture distributions in small farmlands. Making such small-scale estimates has not been available with traditional satellite remote sensing techniques. In this study, the relationship between microwave backscattering coefficient (σ) measured with PALSAR and ground-based soil moisture was determined to investigate the performance of PALSAR for estimating soil moisture distribution in a small-scale farmland. On the ground at a cabbage field in Japan in 2008, the soil moisture distribution of multiple soil layers was measured using time domain reflectometry when the ALOS flew over the field. Soil moisture in the 0–20 cm soil layer showed the largest correlation coefficient with σ (r=0.403). The σ values also showed a strong correlation with the ground surface coverage ratio by cabbage plants. Our results suggested that PALSAR could estimate soil moisture distribution of the 0–20 cm soil layer across a bare field and a crop coverage ratio when crops were planted.


2020 ◽  
Author(s):  
Punithraj Gururaj ◽  
Pruthviraj Umesh ◽  
Amba Shetty

<p>Soil moisture is very important in several disciplines such as agriculture, hydrology and meteorology. It can be mapped using active and passive microwave remote sensing techniques. From literature it is observed that quad polarized data acquired at L-band is sensitive to soil moisture and can map surface soil moisture at high spatial resolution. The main objective of this study is to analyze the potential use of L-band radar data for the retrieval of surface soil moisture over small scale agricultural areas under vegetation cover conditions. Study area selected for this study was Malavalli, village in Karnataka state India which falls in Tropical semi-arid region. Two radar images were acquired using the Phased Array Synthetic Aperture Radar/Advanced Land Observing Satellite (PALSAR/ALOS)-2 sensor over the study area between 23/07/2018 and 17/09/2018 which has spatial resolution of 5m. Ground Soil moisture over 30 sample sites were collected in synchronization with satellite pass over the study area. Acquired ALOS PALSAR-2 images were processed using PolSARpro (Polarimetric SAR data Processing and Education Toolbox). ALOS PALSAR-2 has been processed and lee speckle filter is applied with window size of 3*3. Surface soil moisture distribution over small scale tomato fields are mapped by adding incidence angle using Oh Model. Incidence angle map which is not available with PolSARpro (Polarimetric SAR data Processing and Education Toolbox) software was derived using the polynomial given in the leader file which was required for oh model inversion. Study site clearly shown increasing trend of soil moisture from July to September. It is interesting to note that vegetation and urban areas are clearly discriminated in the PauliRGB images. The retrieval of soil moisture using Oh model is validated using Ground truth samples. The accuracy of Oh model over small scale tomato fields with RMSE of 1.83 m<sup>3</sup>/m<sup>-3</sup>.</p>


2021 ◽  
Author(s):  
Till Francke ◽  
Maik Heistermann ◽  
Markus Köhli ◽  
Christian Budach ◽  
Martin Schrön ◽  
...  

Abstract. Cosmic Ray Neutron Sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. The intrinsic integration over a radial hectare-scale footprint is a clear advantage for averaging out small-scale heterogeneity, but on the other hand the data may become hard to interpret in complex terrain with patchy land use. This study presents a directional shielding approach to block neutrons from certain directions and explores its potential to gain a sharper view on the surrounding soil moisture distribution. Using the Mont-Carlo code URANOS, we modelled the effect of additional polyethylene shields on the horizontal field of view and assessed its impact on the epithermal count rate, propagated uncertainties, and aggregation time. The results demonstrate that directional CRNS measurements are strongly dominated by isotropic neutron transport, which dilutes the signal of the targeted direction especially from the far field. For typical count rates of customary CRNS stations, directional shielding of halfspaces could not lead to acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates should be feasible.


2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Ecohydrology ◽  
2008 ◽  
Vol 1 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Alex J. Rinehart ◽  
Luis A. Méndez-Barroso ◽  
Carlos A. Aragón ◽  
Gautam Bisht ◽  
...  

2020 ◽  
Vol 69 (S1) ◽  
pp. 23-37
Author(s):  
Solomon Habtu ◽  
Teklu Erkossa ◽  
Jochen Froebrich ◽  
Filmon Tquabo ◽  
Degol Fissehaye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document