scholarly journals The Influence of a Resolved Gulf Stream on the Decadal Variability of Southeast US Rainfall

2021 ◽  
Author(s):  
Wei Zhang ◽  
Ben P. Kirtman ◽  
Leo Siqueira ◽  
Baoqiang Xiang ◽  
Johnna M. Infanti ◽  
...  
2018 ◽  
Vol 31 (7) ◽  
pp. 2853-2870 ◽  
Author(s):  
Sumant Nigam ◽  
Alfredo Ruiz-Barradas ◽  
Léon Chafik

Decadal pulses within the lower-frequency Atlantic multidecadal oscillation (AMO) are a prominent but underappreciated AMO feature, representing decadal variability of the subpolar gyre (e.g., the Great Salinity Anomaly of the 1970s) and wielding notable influence on the hydroclimate of the African and American continents. Here clues are sought into their origin in the spatiotemporal development of the Gulf Stream’s (GS) meridional excursions and sectional detachments apparent in the 1954–2012 record of ocean surface and subsurface salinity and temperature observations. The GS excursions are tracked via meridional displacement of the 15°C isotherm at 200-m depth—the GS index—whereas the AMO’s decadal pulses are targeted through the AMO tendency, which implicitly highlights the shorter time scales of the AMO index. The GS’s northward shift is shown to be preceded by the positive phase of the low-frequency North Atlantic Oscillation (LF-NAO) and followed by a positive AMO tendency by 1.25 and 2.5 years, respectively. The temporal phasing is such that the GS’s northward shift is nearly concurrent with the AMO’s cold decadal phase (cold, fresh subpolar gyre). Ocean–atmosphere processes that can initiate phase reversal of the gyre state are discussed, starting with the reversal of the LF-NAO, leading to a mechanistic hypothesis for decadal fluctuations of the subpolar gyre. According to the hypothesis, the fluctuation time scale is set by the self-feedback of the LF-NAO from its influence on SSTs in the seas around Greenland, and by the cross-basin transit of the GS’s detached eastern section; the latter is produced by the southward intrusion of subpolar water through the Newfoundland basin, just prior to the GS’s northward shift in the western basin.


Author(s):  
Wei Zhang ◽  
Ben Kirtman ◽  
Leo Siqueira ◽  
Baoqiang Xiang ◽  
Johnna Infanti ◽  
...  

2019 ◽  
Vol 32 (4) ◽  
pp. 1235-1249 ◽  
Author(s):  
Christopher L. P. Wolfe ◽  
Sultan Hameed ◽  
Lequan Chi

The Gulf Stream is bounded to the north by a strong temperature front known as the North Wall. The North Wall is subject to variability on a wide range of temporal and spatial scales—on interannual time scales, the dominant mode of variability is a longitudinally coherent north–south migration. North Wall variability since 1970 has been characterized by regular oscillations with a period of approximately nine years. This periodic variability, and its relationship to major modes of Atlantic climate variability, is examined in the frequency domain. The North Atlantic Oscillation (NAO) and the Atlantic meridional mode (AMM) both covary with the North Wall on decadal time scales. The NAO leads the North Wall by about one year, whereas the covariability between the North Wall and the AMM is synchronous (no lag). Covariability between the North Wall and the NAO is further examined in terms of the centers of action comprising the NAO: the Icelandic low and Azores high. It is found that the strength of the Icelandic low and its latitude as well as the strength of the Azores high play a role in decadal North Wall variability.


Nature ◽  
1999 ◽  
Author(s):  
Heike Langenberg
Keyword(s):  

1916 ◽  
Vol 25 (134) ◽  
pp. 146-149
Author(s):  
Lucien Gallois
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document