north wall
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Zilong Fan ◽  
Xingan Liu ◽  
Xiang Yue ◽  
Lei Zhang ◽  
Xiaoyu Xie ◽  
...  

In order to optimize the heat preservation capacity of Chinese solar greenhouse (CSG) and further reduce energy consumption, we clarified the mechanism of the external thermal insulation layer that affects the microclimate environment of CSG. The most suitable external insulation layer thickness (EILT) of the solar greenhouse envelope structure in high latitude and cold region has been indicated. A three-dimensional mathematical model was developed based on computational fluid dynamics and verified using experimental measurement. The temperature variations, heat variations and economic benefit were analysed. The results indicated that covering the outer surface of the enclosures with a thermal insulation layer could effectively increase the greenhouse temperature by 1.2–4.0°C. The influence degree of the external thermal insulation layer on the greenhouse microclimate was as follows: sidewall (SW) > north wall (NW) > north roof (NR). In high-dimensional and cold areas, covering the outer surface of all enclosures with insulation layer as the suitable solution could raise the greenhouse air temperature maximally. The suitable EILT of each maintenance structure was obtained as follows: NW 80 mm, SW 80 mm, NR 100 mm.


Author(s):  
Rosyida Permatasari ◽  
Muhammad Alwan Ridhoarto ◽  
Sally Cahyati ◽  
Martinus Bambang Susetyarto

Various, different evaporator placements in a room have produced different airflow patterns, temperature distribution, and airflow velocities. In this study, the average room temperature and airflow velocity measured at 27 points of the CFD simulation for 4 positions of the planned evaporator placements were compared to determine the most ideal position based on the comfortable temperature and the maximum airflow velocity pursuant to the SNI 03-6572-2001 recommendation. On Position 1, two evaporators were given to the west wall. Position 2, two evaporators were placed on the south wall. On Position 3, two evaporators were given to the north wall. Moreover, on Position 4, two evaporators were placed opposite to each other where an evaporator was placed on the south wall, and the other evaporator was placed on the north wall. An ANSYS Fluent software was employed to make the CFD simulation. Based on the results of the study, it was found out that Position 2 was the most ideal evaporator placement position since it met the comfortable temperature limit and has the highest number of airflow velocity points meeting the recommended maximum airflow velocity pursuant to the SNI 03-6572-2001 recommendation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rujia Bi ◽  
Yan Jiao ◽  
Joan A. Browder

AbstractBycatch in fisheries is a major threat to many seabird species. Understanding and predicting spatiotemporal changes in seabird bycatch from fisheries might be the key to mitigation. Inter-annual spatiotemporal patterns are evident in seabird bycatch of the U.S. Atlantic pelagic longline fishery monitored by the National Marine Fisheries Service Pelagic Observer Program (POP) since 1992. A newly developed fast computing Bayesian approximation method provided the opportunity to use POP data to understand spatiotemporal patterns, including temporal changes in location of seabird bycatch hotspots. A Bayesian model was developed to capture the inherent spatiotemporal structure in seabird bycatch and reduce the bias caused by physical barriers such as coastlines. The model was applied to the logbook data to estimate seabird bycatch for each longline set, and the mid-Atlantic bight and northeast coast were the fishing areas with the highest fleet bycatch estimate. Inter-annual changes in predicted bycatch hotspots were correlated with Gulf Stream meanders, suggesting that predictable patterns in Gulf Stream meanders could enable advanced planning of fishing fleet schedules and areas of operation. The greater the Gulf Stream North Wall index, the more northerly the seabird bycatch hotspot two years later. A simulation study suggested that switching fishing fleets from the hindcasted actual bycatch hotspot to neighboring areas and/or different periods could be an efficient strategy to decrease seabird bycatch while largely maintaining fishers’ benefit.


2021 ◽  
pp. 1-19
Author(s):  
John Margham ◽  
David Tomalin

This paper discusses the significance of a fragment of stone sculpture built into the north wall of the churchyard at Carisbrooke, Isle of Wight. The sculpture depicts an open right hand that is larger than life-sized and is probably of late Anglo-Saxon date. The size and character of the sculpture favours a manus dei (hand of God), forming the upper element of a large rood assemblage. The authors consider allied sculpture in which such a hand appears on Anglo-Saxon grave markers and in similar low relief depictions where Christ is figured on the Cross. At Carisbrooke, this architectural sculpture would have formed a significant feature of an Anglo-Saxon minster church that was rebuilt in the early Norman period. The siting of this building and the extent of its parochia is briefly considered. Supplementary material reviews the probable significance of the sculptural use of Quarr stone at Carisbrooke and elsewhere.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5956
Author(s):  
Shuyao Dong ◽  
Md Shamim Ahamed ◽  
Chengwei Ma ◽  
Huiqing Guo

Most greenhouses in the Canadian Prairies shut down during the coldest months (November to February) because of the hefty heating cost. Chinese mono-slope solar greenhouses do not primarily rely on supplemental heating; instead, they mostly rely on solar energy to maintain the required indoor temperature in winter. This study focuses on improving an existing thermal model, entitled RGWSRHJ, for Chinese-style solar greenhouses (CSGs) to increase the robustness of the model for simulating the thermal environment of the CSGs located outside of China. The modified model, entitled SOGREEN, was validated using the field data collected from a CSG in Manitoba, Canada. The results indicate that the average prediction error for indoor and relative humidity is 1.9 °C and 7.0%, and the rRMSE value is 3.3% and 11.5%, respectively. The average error for predicting the north wall and ground surface temperature is 4.2 °C and 2.3 °C, respectively. The study also conducted a case study to analyze the thermal performance of a conceptual CSG in Saskatoon, Canada. The energy analysis indicates the heating requirement of the greenhouse highly depends on the availability of solar radiation. Besides winter, the heating requirement is relatively low in March to maintain 18 °C indoor temperature when the average outdoor temperature was below –4 °C, and negligible during May–August. The results indicate that vegetable production in CSGs could save about 55% on annual heating than traditional greenhouses. Hence, CSGs could be an energy-efficient solution for ensuring food security for northern communities in Canada and other cold regions.


2021 ◽  
pp. 174425912110134
Author(s):  
Yiming Li ◽  
Xiang Yue ◽  
Lei Zhao ◽  
Hui Xu ◽  
Xingan Liu ◽  
...  

Chinese solar greenhouse (CSG) is an energy-saving agricultural building which is used to grow vegetables in winter. The north wall of CSG plays an crucial role in concerning the production yield and quality during the winter months. To improve the thermal performance of north wall, different internal surface structures (ISS) with same materials were compared. Based on the field experiment and the proposed valuation, the dynamic heat storage-release characteristics of the north walls have been analyzed and discussed. The results showed that compared with the flat wall and the striped wall, the alveolate wall has better properties of heat storage and thermal insulation. Moreover, relative humidity in this type of greenhouse is more suitable for growing crops. The alveolate wall can improve indoor thermal environment and reduce the sensitivity to external environment. The obtained results can provide a basis for the scientific construction of the CSG north wall. It has significant potential for the area in high latitude, high altitude and long winter.


2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Xiaoyang Wu ◽  
Xingan Liu ◽  
Xiang Yue ◽  
Hui Xu ◽  
Tianlai Li ◽  
...  

This paper clarified the mechanism of the south and north roofs' effect on the thermal environment of the Chinese solar greenhouse (CSG), using a new parameter: ridge position ratio (RPR), which can describe the dynamic dependency relationship between the south and north roofs. A mathematical model was established using a method of combining computational fluid dynamics (CFD) simulation with experiments, then the model was used to further analyse the effect of RPR on the thermal environment of the CSG. The experimental greenhouse was simulated as an empty building to obtain results independently from these factors including crop and ventilation conditions. The results showed that the occurrence time of the maximum air temperature will be delayed when RPR increases to 0.3 during the daytime. As RPR increases, the heat storage layer of the soil gradually becomes thinner, but the north wall remains unchanged. RPR has a relatively small effect on the minimum temperature of each greenhouse part during the night. Mathematical models of the relationships between RPR, the solar energy that entered the greenhouse and the released heat energy of the enclosure structures were established, respectively. This paper can provide theoretical guidance for the structural design of the CSG.


Sign in / Sign up

Export Citation Format

Share Document