scholarly journals Ozone-forced Southern Annular Mode during Antarctic Stratospheric Warming Events

2021 ◽  
Author(s):  
Martin Jucker ◽  
Rishav Goyal
2010 ◽  
Vol 67 (9) ◽  
pp. 2854-2870 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Dehai Luo

Abstract This study examines the relationship between intraseasonal southern annular mode (SAM) events and the El Niño–Southern Oscillation (ENSO) using daily 40-yr ECMWF Re-Analysis (ERA-40) data. The data coverage spans the years 1979–2002, for the austral spring and summer seasons. The focus of this study is on the question of why positive SAM events dominate during La Niña and negative SAM events during El Niño. A composite analysis is performed on the zonal-mean zonal wind, Eliassen–Palm fluxes, and two diagnostic variables: the meridional potential vorticity gradient, a zonal-mean quantity that is used to estimate the likelihood of wave breaking, and the wave breaking index (WBI), which is used to evaluate the strength of the wave breaking. The results of this investigation suggest that the background zonal-mean flow associated with La Niña (El Niño) is preconditioned for strong (weak) anticyclonic wave breaking on the equatorward side of the eddy-driven jet, the type of wave breaking that is found to drive positive (negative) SAM events. A probability density function analysis of the WBI, for both La Niña and El Niño, indicates that strong anticyclonic wave breaking takes place much more frequently during La Niña and weak anticyclonic wave breaking during El Niño. It is suggested that these wave breaking characteristics, and their dependency on the background flow, can explain the strong preference for SAM events of one phase during ENSO. The analysis also shows that austral spring SAM events that coincide with ENSO are preceded by strong stratospheric SAM anomalies and then are followed by a prolonged period of wave breaking that lasts for approximately 30 days. These findings suggest that the ENSO background flow also plays a role in the excitation of stratospheric SAM anomalies and that the presence of these stratospheric SAM anomalies in turn excites and then maintains the tropospheric SAM anomalies via a positive eddy feedback.


2013 ◽  
Vol 27 (3) ◽  
pp. 950-961 ◽  
Author(s):  
Carolina O. Dufour ◽  
Julien Le Sommer ◽  
Marion Gehlen ◽  
James C. Orr ◽  
Jean‐Marc Molines ◽  
...  

2013 ◽  
Vol 26 (14) ◽  
pp. 5220-5241 ◽  
Author(s):  
Isla R. Simpson ◽  
Theodore G. Shepherd ◽  
Peter Hitchcock ◽  
John F. Scinocca

Abstract Many global climate models (GCMs) have trouble simulating southern annular mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two-part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve the understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy–mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary-scale waves, in particular zonal wavenumber 3, is found in a localized region in the southwest Pacific. It cancels a large proportion of the positive feedback by synoptic- and smaller-scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary-scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.


2021 ◽  
pp. 1
Author(s):  
Jacob Coburn ◽  
S.C. Pryor

AbstractThis work quantitatively evaluates the fidelity with which the Northern Annular Mode (NAM), Southern Annular Mode (SAM), Pacific-North American pattern (PNA), El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) and the first-order mode interactions are represented in Earth System Model (ESM) output from the CMIP6 archive. Several skill metrics are used as part of a differential credibility assessment (DCA) of both spatial and temporal characteristics of the modes across ESMs, ESM families and specific ESM realizations relative to ERA5. The spatial patterns and probability distributions are generally well represented but skill scores that measure the degree to which the frequencies of maximum variance are captured are consistently lower for most ESMs and climate modes. Substantial variability in skill scores manifests across realizations from individual ESMs for the PNA and oceanic modes. Further, the ESMs consistently overestimate the strength of the NAM-PNA first-order interaction and underestimate the NAM-AMO connection. These results suggest that the choice of ESM and ESM realizations will continue to play a critical role in determining climate projections at the global and regional scale at least in the near-term.


2006 ◽  
Vol 33 (23) ◽  
Author(s):  
N. P. Gillett ◽  
T. D. Kell ◽  
P. D. Jones

Sign in / Sign up

Export Citation Format

Share Document