Improving Understanding of Atmospheric River Water Vapor Transport using a Three-Dimensional Straightened Composite Analysis

2021 ◽  
Author(s):  
Guangzhi Xu ◽  
Lin Wang ◽  
Ping Chang ◽  
Xiahui Ma ◽  
Shuyu Wang
2015 ◽  
Vol 96 (8) ◽  
pp. 1243-1255 ◽  
Author(s):  
H. F. Dacre ◽  
P. A. Clark ◽  
O. Martinez-Alvarado ◽  
M. A. Stringer ◽  
D. A. Lavers

Abstract The term “atmospheric river” is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high-impact flooding events. However, there remains some debate as to how these filaments form. In this paper, the authors analyze the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front that sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone’s warm sector, not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the center of a cyclone (as suggested by the term “atmospheric river”), these filaments are, in fact, the result of water vapor exported from the cyclone, and thus they represent the footprints left behind as cyclones travel poleward from the subtropics.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2009 ◽  
Vol 24 (6) ◽  
pp. 1732-1747 ◽  
Author(s):  
Alain Roberge ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense regions of water vapor transport can originate in either the tropical or subtropical oceans, and sometimes have been referred to as Pineapple Express events in previous literature when originating near Hawaii. However, the focus of this paper will be on diagnosing the synoptic-scale signatures of all significant water vapor transport events associated with poleward moisture transport impacting the western coast of Canada, regardless of the exact points of origin of the associated atmospheric river. A trajectory analysis is used to partition the events as a means of creating coherent and meaningful synoptic-scale composites. The results indicate that these IWVT events can be clustered by the general area of origin of the majority of the saturated parcels impacting British Columbia and the Yukon Territories. IWVT events associated with more zonal trajectories are characterized by a strong and mature Aleutian low, whereas IWVT events associated with more meridional trajectories are often characterized by an anticyclone situated along the California or Oregon coastline, and a relatively mature poleward-traveling cyclone, commonly originating in the central North Pacific.


1986 ◽  
Vol 108 (1) ◽  
pp. 19-27 ◽  
Author(s):  
L. M. Hanna ◽  
P. W. Scherer

A steady-state, one-dimensional theoretical model of human respiratory heat and water vapor transport is developed. Local mass transfer coefficients measured in a cast replica of the upper respiratory tract are incorporated into the model along with heat transfer coefficients determined from the Chilton-Colburn analogy and from data in the literature. The model agrees well with reported experimental measurements and predicts that the two most important parameters of the human air-conditioning process are: 1) the blood temperature distribution along the airway walls, and 2) the total cross-sectional area and perimeter of the nasal cavity. The model also shows that the larynx and pharynx can actually gain water over a respiratory cycle and are the regions of the respiratory tract most subject to drying. With slight modification, the model can be used to investigate respiratory heat and water vapor transport in high stress environments, pollutant gas uptake in the respiratory tract, and the connection between respiratory air-conditioning and the function of the mucociliary escalator.


Sign in / Sign up

Export Citation Format

Share Document