scholarly journals Calcium Carbonate Tubular Structures from Soda Lake Water: Growth Process, Characterization, and Implications to Prebiotic Chemistry and Origin of Life

2021 ◽  
Author(s):  
Melese Getenet ◽  
Juan Manuel García-Ruiz
2019 ◽  
Vol 4 (3) ◽  
pp. 159-165
Author(s):  
Prakash Bansode ◽  
Indumathi Somasundaram ◽  
Apurva Birajdar ◽  
Sanjay Mishra ◽  
Dhanashree Patil ◽  
...  

Lonar Crater lake was created by the impact of a massive meteor during the Pleistocene Epoch. Being a hypersaline and hyperalkaline soda lake, rich microbial diversity is reported earlier. Lonar lake water is used by local people and tribals against skin diseases. These observations prompted us to investigate the therapeutic potential of lake water against skin diseases. In this context, we have conducted pilot study to assess the antipsoriatic and antiangiogenic activity of the salt obtained from lake water using THP1 cell line by MTT assay and antiangiogenic activity by in vivo chicken chorioallantoic membrane (CAM) assay, as there is a close relation between psoriasis and angiogenesis. The results revealed that salt possess remarkable antipsoriatic and antiangiogenic activity.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 976
Author(s):  
Craig Robert Walton ◽  
Oliver Shorttle

Compartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants. However, most prebiotically plausible compartments are leaky or unstable, limiting their utility. Here, we develop a new hypothesis for an origin of life environment that capitalises upon, and mitigates the limitations of, prebiotic compartments: multi-compartmentalised layers in the near surface environment—a ’scum’. Scum-type environments benefit from many of the same ensemble-based advantages as microbial biofilms. In particular, scum layers mediate diffusion with the wider environments, favouring preservation and sharing of early informational molecules, along with the selective concentration of compatible prebiotic compounds. Biofilms are among the earliest traces imprinted by life in the rock record: we contend that prebiotic equivalents of these environments deserve future experimental investigation.


2020 ◽  
Author(s):  
Matthias Zessner ◽  
Ottavia Zoboli ◽  
Daniela Reif ◽  
Steffen Kittlaus ◽  
Jörg Krampe ◽  
...  

<p>Lake Neusiedl is the largest endorheic lake in Central Europe, straddling the Austrian–Hungarian border. The lake has an area of 315 km<sup>2</sup>, 52% of which is covered by a reed belt representing the second largest contiguous reed population in Europe. The lake's drainage basin has an area of about 1,120 km<sup>2</sup> and is strongly impacted by intensive agricultural production and urban settlements, especially in the catchment of the main inflow River Wulka. On average, the lake's surface lies 115.45 m above the Adriatic Sea and the lake is no more than 1.8 m deep. Due to its chemical composition Lake Neusield can be characterized as soda lake with typical pH values of 9.0-9.3 in the open lake.</p><p>In this contribution, we present results from investigations on selected PAH (Benzo(a)pyrene, Fluoranthene) and PFAS (PFOS and PFOA) in the lake with specific focus on sediment associated transport and legacy processes. We apply a holistic approach, by combining emission modelling, targeted monitoring, adsorption and mobilization experiments as well as a lake’s mass balance. We describe the current state of contamination of River Wulka and the lake, we identify the main emission pathways into both river and lake and we shed light on the complex environmental behavior within the coupled system lake - reed belt.</p><p>While PFOA and PFOS emissions into the river are dominated by effluents from waste water treatment plants, atmospheric deposition on the lake surface adds a significant contribution to the contamination of the lake. On the contrary, agricultural erosion is the dominant pathway of the contamination of river and lake for Benzo(a)pyrene, Fluoranthene. Our results show that the reed belt at the entrance of River Wulka to the lake acts as a significant sink for these substances due to suspended solid sedimentation.</p><p>Persistent chemicals entering the lake may undergo different fates. They may concentrate in water, because in this peculiar lake evaporation exceeds precipitation. They may also be stored in the sediments of the reed belt, from where they might be later re-mobilized. The fate of Benzo(a)pyrene and Fluoranthene is clearly dominated by the latter processes. While these processes cannot be neglected for PFOS and PFOA as well, PFOA shows a strong enrichment in the lake water. The behavior of PFOS is even more complex. Though highly persistent, its removal from the lake water cannot be explained by suspended solid associated transport to and sedimentation in the reed belt. It is removed from the lake water through degradation or conversion to metabolites to a significant extent as well.</p>


2020 ◽  
Author(s):  
Craig Walton ◽  
Paul B. Rimmer ◽  
Helen Williams ◽  
Oliver Shorttle

A plausible explanation for the origin of life must satisfy constraints imposed by both organic chemistry and early Earth geochemistry. However, the full scope of geochemical parameter space is rarely considered by either theoretical or experimental models of abiogenesis. Here we propose a novel approach, which can make maximum use of available data. We posit that constructive and destructive geochemical interferences with proposed prebiotic reaction schemes can be used to restrict plausible environmental parameter space for the origin of life. Our approach is demonstrated by exploring parameter space for dehydration reactions. Such reactions are universally important in extant biochemistry and all proposed prebiotic reaction schemes, yet challenging to perform under plausible conditions. We specifically explore a minimal pathway for RNA synthesis (formaldehyde; ribose; ribose phosphate; adenosine monophosphate; RNA). Based on assembled thermodynamic and geochemical constraints, we identify that low water activity is a key constructive interference in prebiotic chemistry. Critically, the manner in which low water activity is achieved can strongly discriminate between different environmental scenarios. Exploring interference chemistry is hence an effective means of discriminating between competing origin of life scenarios.


2021 ◽  
Author(s):  
Craig Walton ◽  
Oliver Shorttle

Compartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants. However, most prebiotically plausible compartments are leaky or unstable, limiting their utility. Here, we develop a new hypothesis for an origin of life environment, that capitalises upon, and mitigates the limitations of, prebiotic compartments: multi-compartmentalised layers in the near surface environment --- a 'scum'. Scum-type environments benefit from many of the same ensemble-based advantages as microbial biofilms. In particular, scum layers mediate diffusion with the wider environment, favouring preservation and sharing of early informational molecules, along with the selective concentration of compatible prebiotic compounds. Biofilms are among the earliest traces imprinted by life in the rock record: we contend that prebiotic equivalents of these environments deserve future experimental investigation.


2006 ◽  
Vol 72 (3) ◽  
pp. 2043-2049 ◽  
Author(s):  
James T. Hollibaugh ◽  
Charles Budinoff ◽  
Ryan A. Hollibaugh ◽  
Briana Ransom ◽  
Nasreen Bano

ABSTRACT We characterized the arsenate-reducing, sulfide-oxidizing population of Mono Lake, California, by analyzing the distribution and diversity of rrnA, cbbL, and dissimilatory arsenate reductase (arrA) genes in environmental DNA, arsenate-plus sulfide-amended lake water, mixed cultures, and isolates. The arsenate-reducing community was diverse. An organism represented by an rrnA sequence previously retrieved from Mono Lake and affiliated with the Desulfobulbaceae (Deltaproteobacteria) appears to be an important member of the arsenate-reducing, sulfide-oxidizing community. Sulfide oxidation coupled with arsenate reduction appears to proceed via a two-electron transfer, resulting in the production of arsenite and an intermediate S compound that is subsequently disproportionated. A realgar-like As/S mineral was formed in some experiments.


Sign in / Sign up

Export Citation Format

Share Document