Contrasting Net Ecosystem Production Across Ecological Succession at Subtropical Dry Forest of Northwestern Mexico

2021 ◽  
Author(s):  
Enrico Yepez ◽  
Nidia E. Rojas-Robles ◽  
Juan C. Alvarez-Yepiz ◽  
Zulia Mayari Sanchez-Mejia ◽  
JAIME GARATUZA-PAYAN ◽  
...  
2015 ◽  
Vol 120 (10) ◽  
pp. 2081-2094 ◽  
Author(s):  
Vivian S. Verduzco ◽  
Jaime Garatuza-Payán ◽  
Enrico A. Yépez ◽  
Christopher J. Watts ◽  
Julio C. Rodríguez ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1427
Author(s):  
Chunju Cai ◽  
Zhihan Yang ◽  
Liang Liu ◽  
Yunsen Lai ◽  
Junjie Lei ◽  
...  

Nitrogen (N) deposition has been well documented to cause substantial impacts on ecosystem carbon cycling. However, the majority studies of stimulating N deposition by direct N addition to forest floor have neglected some key ecological processes in forest canopy (e.g., N retention and absorption) and might not fully represent realistic atmospheric N deposition and its effects on ecosystem carbon cycling. In this study, we stimulated both canopy and understory N deposition (50 and 100 kg N ha−1 year−1) with a local atmospheric NHx:NOy ratio of 2.08:1, aiming to assess whether canopy and understory N deposition had similar effects on soil respiration (RS) and net ecosystem production (NEP) in Moso bamboo forests. Results showed that RS, soil autotrophic (RA), and heterotrophic respiration (RH) were 2971 ± 597, 1472 ± 579, and 1499 ± 56 g CO2 m−2 year−1 for sites without N deposition (CN0), respectively. Canopy and understory N deposition did not significantly affect RS, RA, and RH, and the effects of canopy and understory N deposition on these soil fluxes were similar. NEP was 1940 ± 826 g CO2 m−2 year−1 for CN0, which was a carbon sink, indicating that Moso bamboo forest the potential to play an important role alleviating global climate change. Meanwhile, the effects of canopy and understory N deposition on NEP were similar. These findings did not support the previous predictions postulating that understory N deposition would overestimate the effects of N deposition on carbon cycling. However, due to the limitation of short duration of N deposition, an increase in the duration of N deposition manipulation is urgent and essential to enhance our understanding of the role of canopy processes in ecosystem carbon fluxes in the future.


2017 ◽  
Vol 122 (3) ◽  
pp. 690-707 ◽  
Author(s):  
Xibao Xu ◽  
Guishan Yang ◽  
Yan Tan ◽  
Xuguang Tang ◽  
Hong Jiang ◽  
...  

Ecosystems ◽  
2003 ◽  
Vol 6 (3) ◽  
pp. 248-260 ◽  
Author(s):  
Kari E. B. O'Connell ◽  
Stith T. Gower ◽  
John M. Norman

Author(s):  
Elise Pendall ◽  
Jennifer Y. King ◽  
Arvin R. Moser ◽  
Jack Morgan ◽  
Daniel Milchunas

Sign in / Sign up

Export Citation Format

Share Document