net ecosystem production
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 23)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Enrico Yepez ◽  
Nidia E. Rojas-Robles ◽  
Juan C. Alvarez-Yepiz ◽  
Zulia Mayari Sanchez-Mejia ◽  
JAIME GARATUZA-PAYAN ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1629
Author(s):  
Thomas Agyei ◽  
Stanislav Juráň ◽  
Magda Edwards-Jonášová ◽  
Milan Fischer ◽  
Marian Švik ◽  
...  

In order to understand the effect of phytotoxic tropospheric ozone (O3) on terrestrial vegetation, we quantified the impact of current O3 concentration ([O3]) on net ecosystem production (NEP) when compared to the conditions of the pre-industrial era. We compared and tested linear mixed-effects models based on [O3] and stomatal O3 flux (Fsto). The managed ryegrass–clover (Lolium perenne and Trifolium pratense) mixture was grown on arable land in the Czech Republic, Central Europe. Values of [O3] and Fsto were measured and calculated based on resistance analogy, respectively, while NEP was calculated from eddy covariance CO2 fluxes. We found the Fsto-based model more precise when compared to measured NEP. High Fsto was found even at low [O3], while broad summer maximum of [O3] was not necessarily followed by significant NEP decline, due to low soil water content leading to a low stomatal conductivity and Fsto. Comparing to low pre-industrial O3 conditions, current levels of O3 resulted in the reduction of cumulative NEP over the entire growing season, up to 29.7 and 13.5% when the [O3]-based and Fsto-based model was applied, respectively. During the growing season, an O3-induced reduction of NEP ranged between 13.1% in May and 26.2% in July when compared to pre-industrial Fsto levels. Looking to the future, high [O3] and Fsto may lead to the reduction of current NEP by approximately 13.3% on average during the growing season, but may increase by up to 61–86.6% in autumn, indicating further O3-induced acceleration of the senescence. These findings indicate the importance of Fsto and its inclusion into the models estimating O3 effects on terrestrial vegetation. The interaction between environmental factors and stomatal conductance is therefore discussed in detail.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1587
Author(s):  
Imam Basuki ◽  
J. Boone Kauffman ◽  
James T. Peterson ◽  
Gusti Z. Anshari ◽  
Daniel Murdiyarso

Deforested and converted tropical peat swamp forests are susceptible to fires and are a major source of greenhouse gas (GHG) emissions. However, information on the influence of land-use change (LUC) on the carbon dynamics in these disturbed peat forests is limited. This study aimed to quantify soil respiration (heterotrophic and autotrophic), net primary production (NPP), and net ecosystem production (NEP) in peat swamp forests, partially logged forests, early seral grasslands (deforested peat), and smallholder-oil palm estates (converted peat). Peat swamp forests (PSF) showed similar soil respiration with logged forests (LPSF) and oil palm (OP) estates (37.7 Mg CO2 ha−1 yr−1, 40.7 Mg CO2 ha−1 yr−1, and 38.7 Mg CO2 ha−1 yr−1, respectively), but higher than early seral (ES) grassland sites (30.7 Mg CO2 ha−1 yr−1). NPP of intact peat forests (13.2 Mg C ha−1 yr−1) was significantly greater than LPSF (11.1 Mg C ha−1 yr−1), ES (10.8 Mg C ha−1 yr−1), and OP (3.7 Mg C ha−1 yr−1). Peat swamp forests and seral grasslands were net carbon sinks (10.8 Mg CO2 ha−1 yr−1 and 9.1 CO2 ha−1 yr−1, respectively). In contrast, logged forests and oil palm estates were net carbon sources; they had negative mean Net Ecosystem Production (NEP) values (−0.1 Mg CO2 ha−1 yr−1 and −25.1 Mg CO2 ha−1 yr−1, respectively). The shift from carbon sinks to sources associated with land-use change was principally due to a decreased Net Primary Production (NPP) rather than increased soil respiration. Conservation of the remaining peat swamp forests and rehabilitation of deforested peatlands are crucial in GHG emission reduction programs.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1427
Author(s):  
Chunju Cai ◽  
Zhihan Yang ◽  
Liang Liu ◽  
Yunsen Lai ◽  
Junjie Lei ◽  
...  

Nitrogen (N) deposition has been well documented to cause substantial impacts on ecosystem carbon cycling. However, the majority studies of stimulating N deposition by direct N addition to forest floor have neglected some key ecological processes in forest canopy (e.g., N retention and absorption) and might not fully represent realistic atmospheric N deposition and its effects on ecosystem carbon cycling. In this study, we stimulated both canopy and understory N deposition (50 and 100 kg N ha−1 year−1) with a local atmospheric NHx:NOy ratio of 2.08:1, aiming to assess whether canopy and understory N deposition had similar effects on soil respiration (RS) and net ecosystem production (NEP) in Moso bamboo forests. Results showed that RS, soil autotrophic (RA), and heterotrophic respiration (RH) were 2971 ± 597, 1472 ± 579, and 1499 ± 56 g CO2 m−2 year−1 for sites without N deposition (CN0), respectively. Canopy and understory N deposition did not significantly affect RS, RA, and RH, and the effects of canopy and understory N deposition on these soil fluxes were similar. NEP was 1940 ± 826 g CO2 m−2 year−1 for CN0, which was a carbon sink, indicating that Moso bamboo forest the potential to play an important role alleviating global climate change. Meanwhile, the effects of canopy and understory N deposition on NEP were similar. These findings did not support the previous predictions postulating that understory N deposition would overestimate the effects of N deposition on carbon cycling. However, due to the limitation of short duration of N deposition, an increase in the duration of N deposition manipulation is urgent and essential to enhance our understanding of the role of canopy processes in ecosystem carbon fluxes in the future.


Author(s):  
Bieito Fernández Castro ◽  
Hannah Elisa Chmiel ◽  
Camille Minaudo ◽  
Shubham Krishna ◽  
Pascal Perolo ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailu Zhao ◽  
Qianlai Zhuang ◽  
Narasinha Shurpali ◽  
Kajar Köster ◽  
Frank Berninger ◽  
...  

AbstractWildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986–2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year−1, was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year−1) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.


Sign in / Sign up

Export Citation Format

Share Document