Energy forecasting using multiheaded convolutional neural networks in efficient renewable energy resources equipped with energy storage system

Author(s):  
Khursheed Aurangzeb ◽  
Sheraz Aslam ◽  
Syed Irtaza Haider ◽  
Syed Muhammad Mohsin ◽  
Saif ul Islam ◽  
...  
2014 ◽  
Vol 986-987 ◽  
pp. 371-376 ◽  
Author(s):  
Yan Zhang ◽  
Bo Guo ◽  
Tao Zhang

This paper discusses using the battery energy storage system (BESS) to mitigate intermittency and sustain stability of distribution system integrating high penetration level of renewable energy resources (RER). The goal of the control is to have the BESS provide as much smoothing as possible, so that the RER power can be dispatchable in some kind and reliable. The effectiveness of model predictive control (MPC) based approach proposed in this paper have been tested by detail case study, also compared with the day ahead control strategy, load following strategy , and normal situation without energy storage which are usually used before. The result shows that the proposed MPC based approach is more practical, and more robust.


Author(s):  
Faizan Rashid ◽  
◽  
Adeel Gilany ◽  
Saim Rasheed ◽  
Hamza Nisar ◽  
...  

This article presents, a load management system is designed and implemented to integrate renewable energy resources (RES) (solar and wind), which manage the load according to the supply/demand and the user's priorities. The system is implemented on a hybrid system integrating wind energy, solar energy, utility supply, and battery energy storage system. Load management is carried out via switching of the loads. The sources can also be turned ON and OFF. During excess power, the battery module works as an energy storage unit or backup energy supply unit during demand. Loads can be turned ON and OFF wirelessly via GSM. The grid operator can switch the loads by simply sending a command via a short service message (SMS). In the end, the system is tested, and the results are presented. The hybrid system is simulated in MATLAB/Simulink first and then hardware implementation is carried out, which involves integrating renewable resources via converters and load management by switching using a microcontroller (Arduino).


2021 ◽  
pp. 281-327
Author(s):  
Rayees Ahmad Thokar ◽  
Vipin Chandra Pandey ◽  
Nikhil Gupta ◽  
K. R. Niazi1 ◽  
Anil Swarnkar ◽  
...  

2021 ◽  
Vol 16 ◽  
pp. 41-51
Author(s):  
T. A. Boghdady ◽  
S. N. Alajmi ◽  
W. M. K. Darwish ◽  
M. A. Mostafa Hassan ◽  
A. Monem Seif

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6169
Author(s):  
Muhammad Suleman Malik ◽  
Naveed Iftikhar ◽  
Abdul Wadood ◽  
Muhammad Omer Khan ◽  
Muhammad Usman Asghar ◽  
...  

Renewable energy resources like solar energy, wind energy, hydro energy, photovoltaic etc. are gaining much importance due to the day by day depletion of conventional resources. Owing to the lower efficiencies of renewable energy resources, much attention has been paid to improving them. The concept of utilizing phase change materials (PCMs) has attracted wide attention in recent years. This is due to their ability to extract thermal energy when used in collaboration with photovoltaic (PV), thus improving the photoelectric conversion efficiency. In this paper, the objective is to design and fabricate a novel thermal energy storage system using phase change material. An investigation on the characteristics of Potash Alum as a phase change material due to its low cost, easy availability and its usage as an energy storage for the indoor purposes are taken into account. The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantage of high-energy storage density and the isothermal nature of the storage process. In the current study, potash alum was identified as a phase change material combined with renewable energy sources, that can be efficiently and effectively used in storing thermal energy at compartively lower temperatures that can later be used in daily life heating requirements.A parabolic dish which acts of a heat collector is used to track and reflects solar radiation at a single point on a receiver tank. Heat transfer from the solar collector to the storage tank is done by using a circulating heat transfer fluid with the help of a pump. The experimental results show that this system is capable of successfully storing and utilizing thermal energy on indoor scale such as cooking, heating and those applications where temperature is below 92 °C.


2020 ◽  
Vol 17 (3) ◽  
pp. 297-312
Author(s):  
Omar Feddaoui ◽  
Riad Toufouti ◽  
Djamel Labed ◽  
Salima Meziane

It is now more then a choice to use small-distributed generators (DGs) based on renewable energy resources (RES) due to their benefits in minimizing environmental problems and simplifying power system planning and operation. The integration of DGs in the main grid or in forming a standalone microgrid (MG) is increasing day by day and became as an alternative solution to large conventional central power stations and as a key for the electrification of rural areas. This paper presents an overall comparison of controlling the MG system combining between different DGs in islanded mode. Energy management system (EMS) applied is mainly an essential task to maintain an ideal flow of energy in between generation and consumption, many are strategies to do so, the artificial intelligence (AI) (highlighted) is one of the most advantages methods to help sizing, optimizing, and power energy managing. To solve this problem in this paper we present a Fuzzy Logic Control of isolated MG in comparison with a classic PI control system to see the different influences in maintaining stability in voltage and frequency output especially in the standalone application. The considered HRES combines a wind turbine (WT) and photovoltaic (PV) and an energy storage system (ESS). Simulation results obtained from MATLAB/Simulink environment demonstrates the effectiveness of the proposed intelligent artificial algorithm.


Sign in / Sign up

Export Citation Format

Share Document