Adaptive threshold techniques for cognitive radio‐based low power wide area network

Author(s):  
A. J. Onumanyi ◽  
A. M. Abu‐Mahfouz ◽  
G. P. Hancke
Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6837
Author(s):  
Adeiza J. Onumanyi ◽  
Adnan M. Abu-Mahfouz ◽  
Gerhard P. Hancke

The Internet of Things (IoT) is an emerging paradigm that enables many beneficial and prospective application areas, such as smart metering, smart homes, smart industries, and smart city architectures, to name but a few. These application areas typically comprise end nodes and gateways that are often interconnected by low power wide area network (LPWAN) technologies, which provide low power consumption rates to elongate the battery lifetimes of end nodes, low IoT device development/purchasing costs, long transmission range, and increased scalability, albeit at low data rates. However, most LPWAN technologies are often confronted with a number of physical (PHY) layer challenges, including increased interference, spectral inefficiency, and/or low data rates for which cognitive radio (CR), being a predominantly PHY layer solution, suffices as a potential solution. Consequently, in this article, we survey the potentials of integrating CR in LPWAN for IoT-based applications. First, we present and discuss a detailed list of different state-of-the-art LPWAN technologies; we summarize the most recent LPWAN standardization bodies, alliances, and consortia while emphasizing their disposition towards the integration of CR in LPWAN. We then highlight the concept of CR in LPWAN via a PHY-layer front-end model and discuss the benefits of CR-LPWAN for IoT applications. A number of research challenges and future directions are also presented. This article aims to provide a unique and holistic overview of CR in LPWAN with the intention of emphasizing its potential benefits.


2021 ◽  
Vol 13 (1) ◽  
pp. 338
Author(s):  
Nahla Nurelmadina ◽  
Mohammad Kamrul Hasan ◽  
Imran Memon ◽  
Rashid A. Saeed ◽  
Khairul Akram Zainol Ariffin ◽  
...  

The Industrial Internet of things (IIoT) helps several applications that require power control and low cost to achieve long life. The progress of IIoT communications, mainly based on cognitive radio (CR), has been guided to the robust network connectivity. The low power communication is achieved for IIoT sensors applying the Low Power Wide Area Network (LPWAN) with the Sigfox, NBIoT, and LoRaWAN technologies. This paper aims to review the various technologies and protocols for industrial IoT applications. A depth of assessment has been achieved by comparing various technologies considering the key terms such as frequency, data rate, power, coverage, mobility, costing, and QoS. This paper provides an assessment of 64 articles published on electricity control problems of IIoT between 2007 and 2020. That prepares a qualitative technique of answering the research questions (RQ): RQ1: “How cognitive radio engage with the industrial IoT?”, RQ2: “What are the Proposed architectures that Support Cognitive Radio LPWAN based IIOT?”, and RQ3: What key success factors need to comply for reliable CIIoT support in the industry?”. With the systematic literature assessment approach, the effects displayed on the cognitive radio in LPWAN can significantly revolute the commercial IIoT. Thus, researchers are more focused in this regard. The study suggests that the essential factors of design need to be considered to conquer the critical research gaps of the existing LPWAN cognitive-enabled IIoT. A cognitive low energy architecture is brought to ensure efficient and stable communications in a heterogeneous IIoT. It will protect the network layer from offering the customers an efficient platform to rent AI, and various LPWAN technology were explored and investigated.


2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


Author(s):  
Paulo Renato Câmera da Silva ◽  
Herman Augusto Lepikson ◽  
Marcus Vinícius Ivo da Silva ◽  
Rafael Barbosa Mendes

2020 ◽  
Vol 19 (11) ◽  
pp. 1876-1880
Author(s):  
Grzegorz Bogdan ◽  
Konrad Godziszewski ◽  
Yevhen Yashchyshyn

Sign in / Sign up

Export Citation Format

Share Document