Deep neural network based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities

Author(s):  
Dukka KarunKumar Reddy ◽  
Himansu Sekhar Behera ◽  
Janmenjoy Nayak ◽  
Pandi Vijayakumar ◽  
Bighnaraj Naik ◽  
...  
Author(s):  
Diana Gaifilina ◽  
Igor Kotenko

Introduction: The article discusses the problem of choosing deep learning models for detecting anomalies in Internet of Things (IoT) network traffic. This problem is associated with the necessity to analyze a large number of security events in order to identify the abnormal behavior of smart devices. A powerful technology for analyzing such data is machine learning and, in particular, deep learning. Purpose: Development of recommendations for the selection of deep learning models for anomaly detection in IoT network traffic. Results: The main results of the research are comparative analysis of deep learning models, and recommendations on the use of deep learning models for anomaly detection in IoT network traffic. Multilayer perceptron, convolutional neural network, recurrent neural network, long short-term memory, gated recurrent units, and combined convolutional-recurrent neural network were considered the basic deep learning models. Additionally, the authors analyzed the following traditional machine learning models: naive Bayesian classifier, support vector machines, logistic regression, k-nearest neighbors, boosting, and random forest. The following metrics were used as indicators of anomaly detection efficiency: accuracy, precision, recall, and F-measure, as well as the time spent on training the model. The constructed models demonstrated a higher accuracy rate for anomaly detection in large heterogeneous traffic typical for IoT, as compared to conventional machine learning methods. The authors found that with an increase in the number of neural network layers, the completeness of detecting anomalous connections rises. This has a positive effect on the recognition of unknown anomalies, but increases the number of false positives. In some cases, preparing traditional machine learning models takes less time. This is due to the fact that the application of deep learning methods requires more resources and computing power. Practical relevance: The results obtained can be used to build systems for network anomaly detection in Internet of Things traffic.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1452 ◽  
Author(s):  
Minghui Gao ◽  
Li Ma ◽  
Heng Liu ◽  
Zhijun Zhang ◽  
Zhiyan Ning ◽  
...  

Anomaly detection systems can accurately identify malicious network traffic, providing network security. With the development of internet technology, network attacks are becoming more and more sourced and complicated, making it difficult for traditional anomaly detection systems to effectively analyze and identify abnormal traffic. At present, deep neural network (DNN) technology achieved great results in terms of anomaly detection, and it can achieve automatic detection. However, there still exists misclassified traffic in the prediction results of deep neural networks, resulting in redundant alarm information. This paper designs a two-level anomaly detection system based on deep neural network and association analysis. We made a comprehensive evaluation of experiments using DNNs and other neural networks based on publicly available datasets. Through the experiments, we chose DNN-4 as an important part of our system, which has high precision and accuracy in identifying malicious traffic. The Apriori algorithm can mine rules between various discretized features and normal labels, which can be used to filter the classified traffic and reduce the false positive rate. Finally, we designed an intrusion detection system based on DNN-4 and association rules. We conducted experiments on the public training set NSL-KDD, which is considered as a modified dataset for the KDDCup 1999. The results show that our detection system has great precision in malicious traffic detection, and it achieves the effect of reducing the number of false alarms.


2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


2019 ◽  
Vol 9 (15) ◽  
pp. 3174 ◽  
Author(s):  
Zhou ◽  
Li ◽  
Shen

The in-vehicle controller area network (CAN) bus is one of the essential components for autonomous vehicles, and its safety will be one of the greatest challenges in the field of intelligent vehicles in the future. In this paper, we propose a novel system that uses a deep neural network (DNN) to detect anomalous CAN bus messages. We treat anomaly detection as a cross-domain modelling problem, in which three CAN bus data packets as a group are directly imported into the DNN architecture for parallel training with shared weights. After that, three data packets are represented as three independent feature vectors, which corresponds to three different types of data sequences, namely anchor, positive and negative. The proposed DNN architecture is an embedded triplet loss network that optimizes the distance between the anchor example and the positive example, makes it smaller than the distance between the anchor example and the negative example, and realizes the similarity calculation of samples, which were originally used in face detection. Compared to traditional anomaly detection methods, the proposed method to learn the parameters with shared-weight could improve detection efficiency and detection accuracy. The whole detection system is composed of the front-end and the back-end, which correspond to deep network and triplet loss network, respectively, and are trainable in an end-to-end fashion. Experimental results demonstrate that the proposed technology can make real-time responses to anomalies and attacks to the CAN bus, and significantly improve the detection ratio. To the best of our knowledge, the proposed method is the first used for anomaly detection in the in-vehicle CAN bus.


Sign in / Sign up

Export Citation Format

Share Document