Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder

2004 ◽  
Vol 44 (7) ◽  
pp. 777-788 ◽  
Author(s):  
Volker John
1998 ◽  
Vol 374 ◽  
pp. 145-171 ◽  
Author(s):  
DANIEL HENRY ◽  
MARC BUFFAT

The convective flows which arise in shallow cavities filled with low-Prandtl-number fluids when subjected to a horizontal temperature gradient are studied numerically with a finite element method. Attention is focused on a rigid cavity with dimensions 4×2×1, for which experimental data are available. The three-dimensional results indicate that, after a relative concentration of the initial Hadley circulation, a transition to time-dependent flows occurs in the form of a roll oscillation with a purely dynamical origin. This transition corresponds to a Hopf bifurcation with a breaking of symmetry that gives some specific properties to the time evolution of the flow: these properties are shown to be the result of the general behaviour of the dynamical systems. Calculations performed in the case of mercury compare well with the experiments with similar power spectra of the temperature, and this validates the analysis of the nature of the global flow performed in the limiting case Pr=0. All these results are discussed with respect to the linear and nonlinear analyses and to other computational experiments. Numerical results obtained in the corresponding two-dimensional situation give a different transition to the time-dependent flow: it is shown that in the three-dimensional cavity this type of two-dimensional transition is less probable than the observed transition with breaking of symmetry.


1999 ◽  
Vol 66 (2) ◽  
pp. 536-540 ◽  
Author(s):  
S. I. Barry ◽  
G. N. Mercer

Exact analytic solutions are derived for the time-dependent deformation of a poroelastic medium within a two-dimensional finite domain. Solutions are given with a specific set of boundary conditions for the case of a source of fluid at an arbitrary point and for an applied pressure on the boundary. These solutions are ideal for testing numerical schemes for poroelastic flow and deformations due to their relative simplicity.


1998 ◽  
Vol 5 (3) ◽  
pp. 145-151
Author(s):  
A. D. Kirwan, Jr. ◽  
B. L. Lipphardt, Jr.

Abstract. Application of the Brown-Samelson theorem, which shows that particle motion is integrable in a class of vorticity-conserving, two-dimensional incompressible flows, is extended here to a class of explicit time dependent dynamically balanced flows in multilayered systems. Particle motion for nonsteady two-dimensional flows with discontinuities in the vorticity or potential vorticity fields (modon solutions) is shown to be integrable. An example of a two-layer modon solution constrained by observations of a Gulf Stream ring system is discussed.


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


2004 ◽  
Vol 127 (3) ◽  
pp. 400-415 ◽  
Author(s):  
Amador M. Guzmán ◽  
Rodrigo A. Escobar ◽  
Cristina H. Amon

Computational investigations of flow mixing and oxygen transfer characteristics in an intravenous membrane oxygenator (IMO) are performed by direct numerical simulations of the conservation of mass, momentum, and species equations. Three-dimensional computational models are developed to investigate flow-mixing and oxygen-transfer characteristics for stationary and pulsating balloons, using the spectral element method. For a stationary balloon, the effect of the fiber placement within the fiber bundle and the number of fiber rings is investigated. In a pulsating balloon, the flow mixing characteristics are determined and the oxygen transfer rate is evaluated. For a stationary balloon, numerical simulations show two well-defined flow patterns that depend on the region of the IMO device. Successive increases of the Reynolds number raise the longitudinal velocity without creating secondary flow. This characteristic is not affected by staggered or non-staggered fiber placement within the fiber bundle. For a pulsating balloon, the flow mixing is enhanced by generating a three-dimensional time-dependent flow characterized by oscillatory radial, pulsatile longitudinal, and both oscillatory and random tangential velocities. This three-dimensional flow increases the flow mixing due to an active time-dependent secondary flow, particularly around the fibers. Analytical models show the fiber bundle placement effect on the pressure gradient and flow pattern. The oxygen transport from the fiber surface to the mean flow is due to a dominant radial diffusion mechanism, for the stationary balloon. The oxygen transfer rate reaches an asymptotic behavior at relatively low Reynolds numbers. For a pulsating balloon, the time-dependent oxygen-concentration field resembles the oscillatory and wavy nature of the time-dependent flow. Sherwood number evaluations demonstrate that balloon pulsations enhance the oxygen transfer rate, even for smaller flow rates.


Sign in / Sign up

Export Citation Format

Share Document