scholarly journals Novel strategy for food safety risk management and communication: Risk identification for benzoic acid residues in pickled vegetables

2020 ◽  
Vol 8 (10) ◽  
pp. 5419-5425
Author(s):  
Ding‐Yan Lin ◽  
Cheng‐Han Tsai ◽  
Ying Huang ◽  
Siou‐Bang Ye ◽  
Che‐Hsuan Lin ◽  
...  
2021 ◽  
pp. 1-11
Author(s):  
Yu Zhang ◽  
Yarui Zhang ◽  
Xiaocui Li

Food safety supervision involves all aspects of production, processing and sales. True, reliable and complete intelligence can realize the traceability of the entire process of food safety production, thereby ensuring that food safety incidents are controllable from the source. However, most studies only analyze the food safety risk identification and early warning from the perspective of information flow from the theoretical level, and lack specific applications at the practical level. Therefore, this study analyzes the system requirements and the overall business process of the system, expounds the goals and principles of system design, designs the overall framework of the system, and finally elaborates on the realization of its functions of the different functional modules of the system, so as to provide the early warning system development provides decision support and reference. Finally elaborates the realization of its functions according to the different functional modules of the system, so as to provide decision support and reference for the development of early warning system.


Author(s):  
Elena Carrasco ◽  
Antonio Valero ◽  
Fernando Perez-Rodriguez ◽  
Rosa Maria ◽  
Gonzalo Zurer

Food Control ◽  
1999 ◽  
Vol 10 (4-5) ◽  
pp. 299-302 ◽  
Author(s):  
Jørgen Schlundt

1997 ◽  
Vol 60 (11) ◽  
pp. 1432-1438 ◽  
Author(s):  
STEVE C. HATHAWAY

The international food safety environment is currently in a unique period of reevaluation and change. In an emerging trading environment regulated more according to food safety requirements than nontariff trade protection barriers, food safety risk analysis is pivotal to future Codex activities and implementation of the World Trade Organisation (WTO) Sanitary and Phytosanitary (SPS) Agreement. Development of guidelines for food safety risk assessment requires determination of scope, internationally agreed definitions, general principles, guidelines tailored for each class of foodborne hazards, and linkages and interactions with risk management and risk communication. Food safety risk assessments need to be soundly based on science, should incorporate the four analytical steps of the risk assessment paradigm, and should be documented in a transparent and readily understandable form. The particular needs of Codex, the WTO, national governments, industry, and consumers need to be taken into account, and this includes identification of the essential linkages between risk assessment and the design of HACCP plans. With respect to chemical hazards in food, a risk assessment approach provides the opportunity to broaden the understanding of acceptable daily intakes, maximum residue levels, and their public health significance. Guidelines for chemicals in foods will inevitably have to address the differences between safety evaluation and a genuine risk assessment approach. With respect to microbiological hazards, the unique problems associated with risk assessment of living organisms in food make it likely that application of guidelines in the medium term will more commonly use qualitative approaches. In the absence of a history of safety evaluation according to a notionally zero risk baseline, as is the case with chemicals, the objective of microbiological risk analysis to reduce microbial risks to “the minimum which is technologically feasible and practical” represents a genuine focus for risk assessment. As risk assessment is increasing applied and internationally accepted guidelines become established, decision criteria for risk management arguably present the greatest challenge in establishing and maintaining quantitative SPS measures for food in international trade and judging their equivalence. However, the desire of all interested parties for scientifically justified food safety measures may be tempered according to the ability of the global scientific community to generate the necessary data and the political will to accept food safety programmes in different countries that have equivalent outputs.


Toxins ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 118 ◽  
Author(s):  
Micheál O’Mahony

Food safety risk assessment in the European Union (EU) recognises consumer illness that arises from marine biotoxins as a risk associated with bivalve mollusc consumption. EU food regulations contain various general food safety obligations, which should contribute significantly to managing this risk. EU food regulations additionally impose various specific obligations on both Food Business Operators and Competent Authorities in order to manage the marine biotoxin food safety risk in the bivalve mollusc food-chain. These have a particular focus on the pre-harvest component of the food-chain. A central component of these specific systems is the requirement for ongoing monitoring of phytoplankton and biotoxin concentrations in water and molluscs, respectively. This monitoring explicitly brings a potential outcome of closing production areas delineated by classification to prohibit the harvest of bivalve molluscs as food from those areas when acceptable biotoxin concentrations are exceeded. This review considers the utility of these systems, at conceptual and practical levels, and explores their contribution to an effective regulatory risk management approach.


2015 ◽  
Vol 78 (6) ◽  
pp. 1072-1080 ◽  
Author(s):  
AIXIA XU ◽  
DONNA M. PAHL ◽  
ROBERT L. BUCHANAN ◽  
SHIRLEY A. MICALLEF

Consumption of locally, organically grown produce is increasing in popularity. Organic farms typically produce on a small scale, have limited resources, and adopt low technology harvest and postharvest handling practices. Data on the food safety risk associated with hand harvesting, field packing, and packing-house handling with minimal treatment, at this production scale, are lacking. We followed produce from small organic farms from the field through postharvest handling and packing. Pre- and postharvest produce (177 samples) and water (29 samples) were collected and analyzed quantitatively for Escherichia coli, total coliforms (TC), aerobic bacteria (APC), yeasts, molds (M), and enteric pathogens. No pathogens were recovered. E. coli was detected in 3 (3.6%) of 83 preharvest produce samples, 2 (6.3%) of 32 unwashed and 0 of 42 washed postharvest produce samples, and 10 (34.5%) of 29 water samples. No correlation was found between bacterial levels in irrigation water and those on produce. Postharvest handling without washing was a factor for APC and M counts on tomatoes, with lower frequencies postharvest. Postharvest handling with washing was a factor for leafy greens for TC counts, with higher frequencies postharvest. APC (P = 0.03) and yeast (P = 0.05) counts were higher in preharvest than in unwashed postharvest tomatoes. Washed postharvest leafy greens had higher M counts (P = 0.03) and other washed produce had higher TC counts (P = 0.01) than did their preharvest counterparts. Barriers were found to the use of sanitizer in wash water for leafy greens among small farms using organic practices. Hand harvesting and dry handling did not appear to be associated with a significant food safety risk, but washed leafy greens carried higher levels of some microbial indicators, possibly because of the lack of sanitizer in the wash water. The development of resources and materials customized for this sector of growers could enhance dissemination of information on best practices for handling of leafy greens.


2015 ◽  
Vol 78 (12) ◽  
pp. 2126-2135 ◽  
Author(s):  
ALEXANDRA CALLE ◽  
ANNA C. S. PORTO-FETT ◽  
BRADLEY A. SHOYER ◽  
JOHN B. LUCHANSKY ◽  
HARSHAVARDHAN THIPPAREDDI

Boneless beef rib eye roasts were surface inoculated on the fat side with ca. 5.7 log CFU/g of a five-strain cocktail of Salmonella for subsequent searing, cooking, and warm holding using preparation methods practiced by restaurants surveyed in a medium-size Midwestern city. A portion of the inoculated roasts was then passed once through a mechanical blade tenderizer. For both intact and nonintact roasts, searing for 15 min at 260°C resulted in reductions in Salmonella populations of ca. 0.3 to 1.3 log CFU/g. For intact (nontenderized) rib eye roasts, cooking to internal temperatures of 37.8 or 48.9°C resulted in additional reductions of ca. 3.4 log CFU/g. For tenderized (nonintact) rib eye roasts, cooking to internal temperatures of 37.8 or 48.9°C resulted in additional reductions of ca. 3.1 or 3.4 log CFU/g, respectively. Pathogen populations remained relatively unchanged for intact roasts cooked to 37.8 or 48.9°C and for nonintact roasts cooked to 48.9°C when held at 60.0°C for up to 8 h. In contrast, pathogen populations increased ca. 2.0 log CFU/g in nonintact rib eye cooked to 37.8°C when held at 60.0°C for 8 h. Thus, cooking at low temperatures and extended holding at relatively low temperatures as evaluated herein may pose a food safety risk to consumers in terms of inadequate lethality and/or subsequent outgrowth of Salmonella, especially if nonintact rib eye is used in the preparation of prime rib, if on occasion appreciable populations of Salmonella are present in or on the meat, and/or if the meat is not cooked adequately throughout.


Sign in / Sign up

Export Citation Format

Share Document