scholarly journals Chemical hazards in smoked meat and fish

2021 ◽  
Author(s):  
Ogouyôm Herbert Iko Afé ◽  
Yénoukounmè Euloge Kpoclou ◽  
Caroline Douny ◽  
Victor Bienvenu Anihouvi ◽  
Ahmed Igout ◽  
...  
Keyword(s):  
Author(s):  
Ankush Ambardar

Employee safety and health is considered to be one of the major important human resource functions for any hotel organization. The current paper focuses on the application of occupational safety and health of laundry employees looking at the nature of the tasks performed in day to day operations. OSH is one of the significant factors responsible for employees inspiration and moreover retention in a hotel organization. Health, safety and performance of the employees are dependent on understanding and application of ergonomic practices followed during laundry operations. The paper explores laundry employee protection against various critical factors such as injuries, accidents, work postures, chemical exposure, heat, fire, noise, etc. A questionnaire was used to perpetuate perception of laundry employees in regard to protection from factors concerning safety and health issues from hotels of India. The results reveal that some of the OSH practices are been followed in hotels, while some were missing from hotels such as training, periodical audit and protection against chemical hazards. The present study suggests need for adopting OSH practices and enforcing periodical check for the same in every hotel besides of its categorization.


Author(s):  
Michael Gochfeld ◽  
Robert Laumbach

Building on the principles of toxicology, this chapter describes chemicals by structure, source, use, mechanism of action, environmental properties, and target organ. Major advances in toxic effects include more detailed understanding of the mechanisms by which toxic chemicals damage receptors at the subcellular, cellular, and organ level. The chapter describes properties of various types of inorganic and organic chemicals and their adverse health effects. It discusses asphyxiants, such as carbon monoxide and hydrogen sulfide; heavy metals, such as lead, mercury, and cadmium; organic solvents, such as benzene and trichlorethylene; pesticides, including chlorinated hydrocarbons and organophosphates; and a variety of other toxic chemicals to which people are exposed in the home, community, or workplace environment. Several cases are presented to illustrate various concepts concerning chemical hazards in occupational and environmental health.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2830
Author(s):  
Farzaneh Farivar ◽  
Pei Lay Yap ◽  
Tran Thanh Tung ◽  
Dusan Losic

Functionalization of pristine graphene to achieve high water dispersibility remains as a key obstacle owing to the high hydrophobicity and absence of reactive functional groups on the graphene surface. Herein, a green and simple modification approach to prepare highly dispersible functionalized graphene via thermal thiol-ene click reaction was successfully demonstrated on pristine graphene. Specific chemical functionalities (–COO, –NH2 and –S) on the thiol precursor (L-cysteine ethyl ester) were clicked directly on the sp2 carbon of graphene framework with grafting density of 1 unit L-cysteine per 113 carbon atoms on graphene. This functionalized graphene was confirmed with high atomic content of S (4.79 at % S) as well as the presence of C–S–C and N–H species on the L-cysteine functionalized graphene (FG-CYS). Raman spectroscopy evidently corroborated the modification of graphene to FG-CYS with an increased intensity ratio of D and G band, ID/IG ratio (0.3 to 0.7), full-width at half-maximum of G band, FWHM [G] (20.3 to 35.5) and FWHM [2D] (64.8 to 90.1). The use of ethanol as the reaction solvent instead of common organic solvents minimizes the chemical hazards exposure to humans and the environment. This direct attachment of multifunctional groups on the surface of pristine graphene is highly demanded for graphene ink formulations, coatings, adsorbents, sensors and supercapacitor applications.


1980 ◽  
Vol 57 (10) ◽  
pp. A295
Author(s):  
Clifford C. Houk
Keyword(s):  

2019 ◽  
Author(s):  
Othman Soufan ◽  
Jessica Ewald ◽  
Charles Viau ◽  
Doug Crump ◽  
Markus Hecker ◽  
...  

There is growing interest within regulatory agencies and toxicological research communities to develop, test, and apply new approaches, such as toxicogenomics, to more efficiently evaluate chemical hazards. Given the complexity of analyzing thousands of genes simultaneously, there is a need to identify reduced gene sets.Though several gene sets have been defined for toxicological applications, few of these were purposefully derived using toxicogenomics data. Here, we developed and applied a systematic approach to identify 1000 genes (called Toxicogenomics-1000 or T1000) highly responsive to chemical exposures. First, a co-expression network of 11,210genes was built by leveraging microarray data from the Open TG-GATEs program. This network was then re-weighted based on prior knowledge of their biological (KEGG, MSigDB) and toxicological (CTD) relevance. Finally, weighted correlation network analysis was applied to identify 258 gene clusters. T1000 was defined by selecting genes from each cluster that were most associated with outcome measures. For model evaluation, we compared the performance of T1000 to that of other gene sets (L1000, S1500, Genes selected by Limma, and random set) using two external datasets. Additionally, a smaller (T384) and a larger version (T1500) of T1000 were used for dose-response modeling to test the effect of gene set size. Our findings demonstrated that the T1000 gene set is predictive of apical outcomes across a range of conditions (e.g.,in vitroand in vivo, dose-response, multiple species, tissues, and chemicals), and generally performs as well, or better than other gene sets available.


Sign in / Sign up

Export Citation Format

Share Document