Features selection and substitution in PEM fuel cell water management failures diagnosis

Fuel Cells ◽  
2021 ◽  
Author(s):  
Su Zhou ◽  
Keyong Wang ◽  
Shangwei Zhou ◽  
Jing Shan ◽  
Datong Bao
Author(s):  
Kristina Haraldsson ◽  
Tony Markel ◽  
Keith Wipke

Low-temperature operation of a Proton Exchange Membrane (PEM) fuel cell system requires humidification of the membrane. The amount of water produced electrochemically within the fuel cell system is directly related to the system power output. In a vehicular application where the power output may vary substantially over time, it is critical that water management be addressed in the fuel cell and vehicle system design. This paper introduces the integration of a detailed fuel cell system model within a hybrid electric vehicle system model. The newly integrated models provide the capability to better understand the impacts of a variety of fuel cell and vehicle design parameters on overall system performance. Ultimately, coupling these models leads to system optimization and increased vehicle efficiency. This paper presents the initial results of a parametric study to quantify the impacts of condenser size and cathode inlet relative humidity on system water balance under realistic drive cycles in a fuel cell hybrid electric sport utility vehicle. The vehicle simulations included operation under both hot and ambient start conditions. The study results demonstrate that ambient start or aggressive drive cycles require larger condensers or water reservoirs to maintain a neutral water balance than either hot start or less aggressive drive cycles.


Author(s):  
Hyung Hee Cho ◽  
Sanghoon Lee ◽  
Dong-Ho Rhee

Internal water management in proton exchange membrane (PEM) fuel cell has been considered as one of most significant key factors for its performance enhancement. It is because relative humidity of hydrogen and air is strongly related to the performance of PEM fuel cell in terms of H+ movement within the membrane. In addition, production of H2O by chemical reactions can bring several problems during concentration loss region since combination of vapor in supplying air and byproduct of chemical reaction should lead to excess H2O remaining in PEM fuel cell, resulting flooding phenomena which may block air flow channels. Therefore, in order to understand and manage such phenomena to enhance the performance of PEM fuel cell, especially under concentration loss region, this paper focuses on the visualization of the flooding phenomena and application of the modified flow path on the cathode separator for flooding reduction.


Sign in / Sign up

Export Citation Format

Share Document