A coupled discrete element and finite element model for multiscale simulation of geological carbon sequestration

2015 ◽  
Vol 5 (4) ◽  
pp. 474-486 ◽  
Author(s):  
Jie Bao ◽  
Zhijie Xu ◽  
Yilin Fang
Author(s):  
John M. Emery ◽  
Jeffrey E. Bozek ◽  
Anthony R. Ingraffea

The fatigue resistance of metallic structures is inherently random due to environmental and boundary conditions, and microstructural geometry, including discontinuities, and material properties. A new methodology for fatigue life prediction is under development to account for these sources of randomness. One essential aspect of the methodology is the ability to perform truly multiscale simulations: simulations that directly link the boundary conditions on the structural length scale to the damage mechanisms of the microstructural length scale. This presentation compares and contrasts two multiscale methods suitable for fatigue life prediction. The first is a brute force method employing the widely-used multipoint constraint technique which couples a finite element model of the microstructure within the finite element model of the structural component. The second is a more subtle, modified multi-grid method which alternates analyses between the two finite element models while representing the evolving microstructural damage. Examples and comparisons are made for several geometries and preliminary validation is achieved with comparison to experimental tests conducted by the Northrop Grumman Corporation on a wing-panel structural geometry.


Particuology ◽  
2022 ◽  
Vol 68 ◽  
pp. 88-100
Author(s):  
Xu Liu ◽  
Nan Gui ◽  
Xiyuan Cui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

2001 ◽  
Vol 677 ◽  
Author(s):  
Robert E. Rudd

ABSTRACTWe discuss concurrent multiscale simulations of dynamic and temperature-dependent processes found in nanomechanical systems coupled to larger scale surroundings. We focus on the behavior of sub-micron Micro-Electro-Mechanical Systems (MEMS), especially micro-resonators. The coupling of length scales methodology we have developed for MEMS employs an atomistic description of small but key regions of the system, consisting of millions of atoms, coupled concurrently to a finite element model of the periphery. The result is a model that accurately describes the behavior of the mechanical components of MEMS down to the atomic scale. This paper reviews some of the general issues involved in concurrent multiscale simulation, extends the methodology to metallic systems and describes how it has been used to identify atomistic effects in sub-micron resonators.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document