Geochronology and trace elements of zircon in the Southern Chinese Altay: Implications for tectonic setting

2021 ◽  
Author(s):  
Lei Niu ◽  
Tao Hong ◽  
Xing‐Wang Xu ◽  
Xue‐Hai Wang ◽  
Hang Li ◽  
...  
Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 335 ◽  
Author(s):  
Vojtěch Wertich ◽  
Jaromír Leichmann ◽  
Marek Dosbaba ◽  
Jens Götze

We performed a detailed analysis of hydrothermal quartz at the Mokrsko gold deposit (Čelina, Mokrsko-East, and Mokrsko-West deposits). Twenty-one samples were studied by scanning electron microscopy cathodoluminescence (CL) imagining, CL emission spectra and trace elements were measured on six selected samples. Four quartz growth generations Q1 to Q4 were described. Homogeneous early blue CL Q1 with initial emission spectra at 380 and 500 nm was observed at the Čelina deposit with typical titanium concentrations in the range of 20–50 ppm. Hydrothermal quartz at Mokrsko-West, which also includes early Q1, late subhedral faces of yellow CL Q2, and microfissures of greenish CL Q3 (both 570 nm), is characterized by titanium depletion. The titanium concentration is comparable to previous studies of crystallization temperatures proving titanium concentration in quartz as a good geothermal indicator. Q4, developed in microfissures only at Čelina, has no visual CL effect. Mokrsko-West is specific in comparison to Mokrsko-East and Čelina by germanium enrichments in hydrothermal quartz (up to 17 ppm) and the presence of fluorite. Tectonic (sheeted veinlets system, regional tectonic setting) and geochemical (germanium in quartz, the presence of fluorite) characteristics of the quartz veins link the late mineralization stages at the Mokrsko-West deposit to the temporally related Blatná intrusive suite.


1982 ◽  
Vol 19 (3) ◽  
pp. 385-397 ◽  
Author(s):  
G. H. Gale ◽  
J. A. Pearce

Representative samples of Caledonian greenstones from the Grong, Joma, Løkken, Støren, Stavenes, and Bømlo areas in central and southern Norway have been analysed for major elements and over 20 trace elements. Ocean-floor tholeiite-normalized trace-element patterns and chondrite-normalized rare-earth patterns both provide clues to the genesis, original tectonic setting, petrologic character, and effects of alteration of these greenstones. We conclude that the Støren, Stavenes, and Løkken greenstones were generated at spreading axes within the Caledonian ocean, the Grong and possibly the Bømlo submarine greenstones were erupted in an island-arc system, and the Joma and Bømlo subaerial greenstones were erupted in a within-plate setting. The Løkken greenstones may have been generated in a marginal basin, whereas those from Støren and Stavenes were probably generated at a rapidly spreading axis in a major ocean.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 745
Author(s):  
Wenhua Han ◽  
Haizhou Ma ◽  
Weixuan Fang ◽  
Huaide Cheng ◽  
Yongshou Li ◽  
...  

Qamdo basin is located between the suture zone of Jinsha River (Ailao Mountains) and that of Ban Gong Lake (Nujiang) in the eastern Tethys. Part of the Jingxing Formation is deposited in the southwest of the basin. In this study, two profiles were investigated from the north and south of Qamdo basin. The characteristics of detrital zircon LA-ICP-MS U-Pb age, and the main and trace elements of sandstone were analyzed. The characteristics of major and trace elements showed that the tectonic setting of the study area is mainly composed of a relatively stable active continental margin and a passive continental margin, showing characteristics of a continental island arc. The weathering degree of Jingxing Formation in the Qamdo area is lower than that in the Lanping-Simao area, which may be closer to the origin. The age distribution characteristics of detrital zircon grains indicate that the Qiangtang Block, Youjiang basin, and Yangtze area jointly constitute the provenance of the Qamdo-Lanping-Simao basin. Both basins may be part of a large marine basin with unified water conservancy connection before evaporite deposition. Metamorphic seawater from the Qamdo basin may migrate to the Lanping-Simao basin and even the Khorat basin, where evaporite was deposited.


2020 ◽  
Vol 8 (2) ◽  
pp. 279
Author(s):  
G. U. Ozulu ◽  
A. U. Okoro ◽  
V. O. Ndubueze

The petrography and geochemistry of major and trace elements distribution pattern for the Lokoja Sandstones, Southern Bida Basin, Nigeria; were used to interpret their provenance, weathering conditions and paleotectonic setting. A total of seven (7) representative sandstone samples were selected for petrographic, heavy minerals and inorganic geochemical analyses; that is X- ray diffraction (XRD), X-ray fluorescence (XRF) and Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Results of the petrographic analysis showed 52.14 % quartz, 39.29 % feldspar, 2.00 % rock fragments, 5.14 % matrix and cement fraction as well as 1.43 % unfilled voids. Results of major elements and oxides suggests intermediate to felsic source rocks while the dominance of Na-rich feldspar to the k-feldspar and high value of Fe2O3+MgO shows contribution from ferromagnesian minerals of mafic igneous source provenance and oceanic island arc region. Average concentrations of designated trace elements in the studied sandstones are low in concentrations. The lower concentrations of Cr, Co, and Ni and higher concentrations of Zr, Ba, and Sr suggest a felsic progenitor rock. But significantly high values of Ni (7.02 ppm), La/Co (7.99), and Ni/Co (3.28) as well as the low concentration value of Y, (3.23 ppm) suggests contributions from mafic source rocks. Low average ratios for La/Co, Th/Co, Th/Sc, Ni/Co, Cr/Ni, Cr/Sc, Cr/Th, Ni/Co, Cr/Ni, Cr/Th, Cr/Sc, Th/Sc, La/Co and Th/Co also suggest a felsic source provenance. An average CIA value of 78.04% is indicative of an intense recycling in the source area while an average MIA value of 56.13% suggests a moderate degree of weathering. The high clay matrix and feldspar content have been used to classify the sandstones as feldspathic greywackes deposited in dry arid climatic conditions under a basement uplifted tectonic setting.   


2019 ◽  
Vol 11 (1) ◽  
pp. 125-139 ◽  
Author(s):  
Min Wang ◽  
Wenfei Guo ◽  
Wentao Yang

AbstractThe Qinling Orogen and the Jiyuan Basin constitute a basin-mountain system during the Early Mesozoic. Therefore, sediments from the Jiyuan Basin can be used to deduce the orogenic process of the Qinling Orogen. This paper attempts to use detrital zircon trace elements with ages ranging from the Late Carboniferous to the Middle Triassic that were obtained from the Jiyuan Basin to discuss the tectonic evolution of Qinling Orogen. On the tectonic setting discriminating diagrams, most grains are concentrated in convergent continental margins/orogenic settings,whereas the remaining samples (268 Ma, 265Ma, 264 Ma and 254Ma) are plotted in anorogenic field. Compared to the Early Paleozoic (400-500Ma) zircons, 306Ma and 281Ma grains represent higher Th/ Nb ratios, which might be related to the Mianlve oceanic crust subduction. The lower Th/Nb ratios containing 268 Ma, 265Ma, 264 Ma and 254Ma grains might indicate lithospheric extension subsequently. The final continent-continent collision between South China and North China blocks took place after the Middle Triassic (242Ma).


Sign in / Sign up

Export Citation Format

Share Document