scholarly journals Central role of the TIR-domain-containing adaptor-inducing interferon-β (TRIF) adaptor protein in murine sterile liver injury

Hepatology ◽  
2017 ◽  
Vol 65 (4) ◽  
pp. 1336-1351 ◽  
Author(s):  
Katherine J. Brempelis ◽  
Sebastian Y. Yuen ◽  
Nicole Schwarz ◽  
Isaac Mohar ◽  
Ian N. Crispe
Author(s):  
Tetsuo Takehara ◽  
Naoki Mizutani ◽  
Hayato Hikita ◽  
Yoshinobu Saito ◽  
Yuta Myojin ◽  
...  

Grb2-associated binder 1 (Gab1) is an adaptor protein that is important for intracellular signal transduction by receptor tyrosine kinases that are receptors for various growth factors and plays an important role in rapid liver regeneration after partial hepatectomy and during acute hepatitis. On the other hand, mild liver regeneration is induced in livers of individuals with chronic hepatitis, where hepatocyte apoptosis is persistent; however, the impact of Gab1 on such livers remains unclear. We examined the role of Gab1 in chronic hepatitis. Gab1 knockdown enhanced the decrease in cell viability and apoptosis induced by ABT-737, a Bcl-2/-xL/-w inhibitor, in BNL.CL2 cells, while cell viability and caspase activity were unchanged in the absence of ABT-737. ABT-737 treatment induced Gab1 cleavage to form p35-Gab1. p35-Gab1 was also detected in the livers of mice with hepatocyte-specific Mcl-1 knockout (KO), which causes persistent hepatocyte apoptosis. Gab1 deficiency exacerbated hepatocyte apoptosis in Mcl-1 KO mice with posttranscriptional downregulation of Bcl-XL. In BNL.CL2 cells treated with ABT-737, Gab1 knockdown posttranscriptionally suppressed Bcl-xL expression, and p35-Gab1 overexpression enhanced Bcl-xL expression. Gab1 deficiency in Mcl-1 KO mice activated STAT3 signaling in hepatocytes, increased hepatocyte proliferation, and increased the incidence of liver cancer with the exacerbation of liver fibrosis. In conclusion, Gab1 is cleaved in the presence of apoptotic stimuli and forms p35-Gab1 in hepatocytes. In chronic liver injury, the role of Gab1 in suppressing apoptosis and reducing liver damage, fibrosis, and tumorigenesis is more important than its role in liver regeneration.


Life Sciences ◽  
2016 ◽  
Vol 162 ◽  
pp. 33-40 ◽  
Author(s):  
Anyelo Duran ◽  
Nereida Valero ◽  
Jesus Mosquera ◽  
Lineth Delgado ◽  
Melchor Alvarez-Mon ◽  
...  

2013 ◽  
Vol 69 (12) ◽  
pp. 2420-2430 ◽  
Author(s):  
M. Obayed Ullah ◽  
Thomas Ve ◽  
Matthew Mangan ◽  
Mohammed Alaidarous ◽  
Matthew J. Sweet ◽  
...  

TRIF/TICAM-1 (TIR domain-containing adaptor inducing interferon-β/TIR domain-containing adaptor molecule 1) is the adaptor protein in the Toll-like receptor (TLR) 3 and 4 signalling pathway that leads to the production of type 1 interferons and cytokines. The signalling involves TIR (Toll/interleukin-1 receptor) domain-dependent TRIF oligomerization. A protease-resistant N-terminal region is believed to be involved in self-regulation of TRIF by interacting with its TIR domain. Here, the structural and functional characterization of the N-terminal domain of TRIF (TRIF-NTD) comprising residues 1–153 is reported. The 2.22 Å resolution crystal structure was solved by single-wavelength anomalous diffraction (SAD) using selenomethionine-labelled crystals of TRIF-NTD containing two additional introduced Met residues (TRIF-NTDA66M/L113M). The structure consists of eight antiparallel helices that can be divided into two subdomains, and the overall fold shares similarity to the interferon-induced protein with tetratricopeptide repeats (IFIT) family of proteins, which are involved in both the recognition of viral RNA and modulation of innate immune signalling. Analysis of TRIF-NTD surface features and the mapping of sequence conservation onto the structure suggest several possible binding sites involved in either TRIF auto-regulation or interaction with other signalling molecules or ligands. TRIF-NTD suppresses TRIF-mediated activation of the interferon-β promoter, as well as NF-κB-dependent reporter-gene activity. These findings thus identify opportunities for the selective targeting of TLR3- and TLR4-mediated inflammation.


2018 ◽  
Vol 56 (01) ◽  
pp. E2-E89
Author(s):  
B Schiller ◽  
C Wegscheid ◽  
L Berkhout ◽  
A Zarzycka ◽  
U Steinhoff ◽  
...  
Keyword(s):  

Author(s):  
Dongxiao Li ◽  
Xiangming Ding ◽  
Dean Tian ◽  
Limin Xia
Keyword(s):  

2021 ◽  
Vol 22 (14) ◽  
pp. 7249
Author(s):  
Siyer Roohani ◽  
Frank Tacke

The liver is an essential immunological organ due to its gatekeeper position to bypassing antigens from the intestinal blood flow and microbial products from the intestinal commensals. The tissue-resident liver macrophages, termed Kupffer cells, represent key phagocytes that closely interact with local parenchymal, interstitial and other immunological cells in the liver to maintain homeostasis and tolerance against harmless antigens. Upon liver injury, the pool of hepatic macrophages expands dramatically by infiltrating bone marrow-/monocyte-derived macrophages. The interplay of the injured microenvironment and altered macrophage pool skews the subsequent course of liver injuries. It may range from complete recovery to chronic inflammation, fibrosis, cirrhosis and eventually hepatocellular cancer. This review summarizes current knowledge on the classification and role of hepatic macrophages in the healthy and injured liver.


2019 ◽  
Vol 95 (6) ◽  
pp. 597-605 ◽  
Author(s):  
Yunqi An ◽  
Pengcheng Wang ◽  
Pengfei Xu ◽  
Hung-Chun Tung ◽  
Yang Xie ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document