Category specificity in the medial temporal lobe: A systematic review

Hippocampus ◽  
2018 ◽  
Vol 29 (4) ◽  
pp. 313-339 ◽  
Author(s):  
Jessica Robin ◽  
Yeshith Rai ◽  
Mikaeel Valli ◽  
Rosanna K. Olsen
2021 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Xiaoyou Zhang ◽  
Boyi Zong ◽  
Wenrui Zhao ◽  
Lin Li

Mind–body exercise has been proposed to confer both physical and mental health benefits. However, there is no clear consensus on the neural mechanisms underlying the improvements in health. Herein, we conducted a systematic review to reveal which brain region or network is regulated by mind–body exercise. PubMed, Web of Science, PsycINFO, SPORTDiscus, and China National Knowledge Infrastructure databases were systematically searched to identify cross-sectional and intervention studies using magnetic resonance imaging (MRI) to explore the effect of mind–body exercise on brain structure and function, from their inception to June 2020. The risk of bias for cross-sectional studies was assessed using the Joanna Briggs Institute (JBI) checklist, whereas that of interventional studies was analyzed using the Physiotherapy Evidence Database (PEDro) scale. A total of 15 studies met the inclusion criteria. Our analysis revealed that mind–body exercise modulated brain structure, brain neural activity, and functional connectivity, mainly in the prefrontal cortex, hippocampus/medial temporal lobe, lateral temporal lobe, insula, and the cingulate cortex, as well as the cognitive control and default mode networks, which might underlie the beneficial effects of such exercises on health. However, due to the heterogeneity of included studies, more randomized controlled trials with rigorous designs, similar measured outcomes, and whole-brain analyses are warranted.


2021 ◽  
Author(s):  
Heidrun Schultz ◽  
Jungsun Yoo ◽  
Dar Meshi ◽  
Hauke R. Heekeren

AbstractForming new memories is a fundamental part of human life, and the medial temporal lobe (MTL) is central to memory formation. Recent research suggests that within MTL, the perirhinal and parahippocampal cortices (PRC, PHC) process object and scene memory, respectively, whereas the hippocampus (HC) is agnostic to stimulus category. It is unclear, however, whether MTL category specificity extends to item encoding. Furthermore, MTL does not act in isolation: Reward-related memories are formed in interplay with the dopaminergic midbrain (substantia nigra/ventral tegmental area, SNVTA) and amygdala (AMY), but it is unclear whether reward modulates neural item encoding in a category-specific way. To address these questions, we had 39 healthy volunteers (27 for all memory-based analyses) undergo functional magnetic resonance imaging while they solved an incidental encoding task, which paired objects or scenes with high or low reward, followed by a next-day surprise recognition test. Behaviourally, high reward preferably enhanced object memory. Importantly, neural activity in PRC and PHC reflected item encoding of objects and scenes, respectively. Moreover, AMY encoding effects were selective for high-reward objects, with a similar pattern in PRC. SNVTA and HC showed no clear evidence of item encoding. The behavioural and neural asymmetry of reward-related encoding effects may be conveyed through an anterior-temporal memory system, including AMY and PRC, potentially in interplay with the ventromedial prefrontal cortex (vmPFC).


Hippocampus ◽  
2009 ◽  
Vol 19 (3) ◽  
pp. 308-319 ◽  
Author(s):  
L. Litman ◽  
T. Awipi ◽  
L. Davachi

2020 ◽  
Author(s):  
Susan L. Benear ◽  
Elizabeth A. Horwath ◽  
Emily Cowan ◽  
M. Catalina Camacho ◽  
Chi Ngo ◽  
...  

The medial temporal lobe (MTL) undergoes critical developmental change throughout childhood, which aligns with developmental changes in episodic memory. We used representational similarity analysis to compare neural pattern similarity for children and adults in hippocampus and parahippocampal cortex during naturalistic viewing of clips from the same movie or different movies. Some movies were more familiar to participants than others. Neural pattern similarity was generally lower for clips from the same movie, indicating that related content taxes pattern separation-like processes. However, children showed this effect only for movies with which they were familiar, whereas adults showed the effect consistently. These data suggest that children need more exposures to stimuli in order to show mature pattern separation processes.


2020 ◽  
Vol 133 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Anthony T. Lee ◽  
John F. Burke ◽  
Pranathi Chunduru ◽  
Annette M. Molinaro ◽  
Robert Knowlton ◽  
...  

OBJECTIVERecent trials for temporal lobe epilepsy (TLE) highlight the challenges of investigating surgical outcomes using randomized controlled trials (RCTs). Although several reviews have examined seizure-freedom outcomes from existing data, there is a need for an overall seizure-freedom rate estimated from level I data as investigators consider other methods besides RCTs to study outcomes related to new surgical interventions.METHODSThe authors performed a systematic review and meta-analysis of the 3 RCTs of TLE in adults and report an overall surgical seizure-freedom rate (Engel class I) composed of level I data. An overall seizure-freedom rate was also collected from level II data (prospective cohort studies) for validation. Eligible studies were identified by filtering a published Cochrane meta-analysis of epilepsy surgery for RCTs and prospective studies, and supplemented by searching indexed terms in MEDLINE (January 1, 2012–April 1, 2018). Retrospective studies were excluded to minimize heterogeneity in patient selection and reporting bias. Data extraction was independently reverified and pooled using a fixed-effects model. The primary outcome was overall seizure freedom following surgery. The historical benchmark was applied in a noninferiority study design to compare its power to a single-study cohort.RESULTSThe overall rate of seizure freedom from level I data was 72.4% (55/76 patients, 3 RCTs), which was nearly identical to the overall seizure-freedom rate of 71.7% (1325/1849 patients, 18 studies) from prospective cohorts (z = 0.134, p = 0.89; z-test). Seizure-freedom rates from level I and II studies were consistent over the years of publication (R2< 0.01, p = 0.73). Surgery resulted in markedly improved seizure-free outcomes compared to medical management (RR 10.82, 95% CI 3.93–29.84, p < 0.01; 2 RCTs). Noninferiority study designs in which the historical benchmark was used had significantly higher power at all difference margins compared to using a single cohort alone (p < 0.001, Bonferroni’s multiple comparison test).CONCLUSIONSThe overall rate of seizure freedom for temporal lobe surgery is approximately 70% for medically refractory epilepsy. The small sample size of the RCT cohort underscores the need to move beyond standard RCTs for epilepsy surgery. This historical seizure-freedom rate may serve as a useful benchmark to guide future study designs for new surgical treatments for refractory TLE.


Sign in / Sign up

Export Citation Format

Share Document