An analytical method for solving exact solutions of the convective heat transfer in fully developed laminar flow through a circular tube

2017 ◽  
Vol 46 (8) ◽  
pp. 1342-1353 ◽  
Author(s):  
Ali Belhocine ◽  
Wan Zaidi Wan Omar
Author(s):  
Kyo Sik Hwang ◽  
Hyo Jun Ha ◽  
Seung Hyun Lee ◽  
Hyun Jin Kim ◽  
Seok Pil Jang ◽  
...  

This paper is to investigate flow and convective heat transfer characteristics of nanofluids with various shapes of Al2O3 nanoparticles flowing through a uniformly heated circular tube under fully developed laminar flow regime. For the purpose, Al2O3 nanofluids of 0.3 Vol.% with sphere, rod, platelet, blade and brick shapes are manufactured by a two-step method. Zeta potential as well as TEM image is experimentally obtained to examine suspension and dispersion characteristics of Al2O3 nanofluids with various shapes. To investigate flow characteristics, the pressure drop of Al2O3 nanofluids with various shapes are measured. In order to investigate convective heat transfer characteristics, the effective thermal conductivities of Al2O3 nanofluids with various shapes, the temperature distribution at the tube surface and the mean temperature of nanofluids at the inlet are measured, respectively. Based on the experimental results, the convective heat transfer coefficient of Al2O3 nanofluids with various shapes is compared with that of pure water and the thermal conductivity of Al2O3 nanofluids with various shapes. Thus, the effect of nanoparticles shape on the flow and convective heat transfer characteristics flowing through a uniformly heated circular tube under fully developed laminar flow regime is experimentally investigated.


2021 ◽  
Vol 405 ◽  
pp. 126635 ◽  
Author(s):  
Marzena Iwaniszyn ◽  
Przemysław J. Jodłowski ◽  
Katarzyna Sindera ◽  
Anna Gancarczyk ◽  
Mateusz Korpyś ◽  
...  

1962 ◽  
Vol 29 (4) ◽  
pp. 609-614 ◽  
Author(s):  
C. J. Cremers ◽  
E. R. G. Eckert

Previous studies by flow visualization have indicated that the flow through a duct of triangular cross section is in its characteristics quite different from flow through a duct with circular cross section. They revealed among others that purely laminar flow exists in the corners of the duct even though the bulk of the fluid moves in turbulent motion. Heat-transfer measurements in such a duct appear to indicate that the turbulent transport in the direction of the height of the duct is considerably smaller than expected from circular tube measurements. The present paper reports the measurements of turbulent correlations for turbulent flow through such a duct. These measurements have been made with hot wires of very small dimensions. They again reveal the existence of a laminar corner region. In the bulk of the fluid, the differences of the correlations to those in a round tube turned out to be smaller than originally suspected.


Sign in / Sign up

Export Citation Format

Share Document