scholarly journals Multi‐year observations of the high mountain water cycle in the Langtang catchment, Central Himalaya

2021 ◽  
Author(s):  
Jakob F. Steiner ◽  
Tika R. Gurung ◽  
Sharad P. Joshi ◽  
Inka Koch ◽  
Tuomo Saloranta ◽  
...  
2002 ◽  
Vol 33 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Carmen de Jong ◽  
Franz K. List ◽  
Peter J. Ergenzinger

The Dischma is a typical high mountain valley in the alpine source area of the River Rhine. A knowledge of the daily and seasonal water balance is important for understanding and predicting the effects of climatic fluctuations on river discharge. Traditional methods of analysing the water cycle usually involve deriving evaporation from precipitation and discharge. However, in mountain regions single station precipitation and discharge data cannot simply be extrapolated to represent regional evaporation characteristics. Measurements of precipitation in mountains are both limited in accuracy and spatial representativeness in contrast to well-defined discharge data. Field measurements of evaporation in the Dischma valley recorded over five summers give a fairly accurate picture of this component over space and time. New results on the characteristics of evaporation, transpiration and condensation are obtained from automated evaporation pans, lysimeters and climatological stations. The water cycle can be defined with greater precision by measuring discharge and evaporation and deriving precipitation than the more traditional technique of deriving evaporation.


2016 ◽  
Author(s):  
Julia Curio ◽  
Dieter Scherer

Abstract. The Tibetan Plateau (TP) is the origin of many large Asian rivers, which provide moisture for large regions in South and East Asia. Therefore, the water cycle on the TP and adjacent high mountain ranges and especially the precipitation distribution plays an important role for the water availability for billions of people in the regions downstream of the TP. Based on the High Asia Refined analysis (HAR) we analyse the influence of dynamic factors on precipitation, enhancing or suppressing precipitation development. We selected six precipitation controls, the horizontal and vertical wind speed at 300 hPa and in about two kilometres above ground, the atmospheric water transport, and the planetary boundary layer height. Focus of the study are the seasonality and the spatial variability of these precipitation controls and their dominant patterns. The results show that precipitation controls have different effects on precipitation in different regions and seasons. This depends mainly on the type of precipitation, convective or frontal/cyclonic precipitation. Additionally, the study reveals that the mid-latitude westerlies have a high impact on precipitation distribution on the TP and its surrounding year-round.


2016 ◽  
Vol 7 (3) ◽  
pp. 767-782 ◽  
Author(s):  
Julia Curio ◽  
Dieter Scherer

Abstract. The Tibetan Plateau (TP) is the origin of many large Asian rivers, which provide water resources for large regions in south and east Asia. Therefore, the water cycle on the TP and adjacent high mountain ranges, in particular the precipitation distribution and variability play an important role for the water availability for billions of people in the downstream regions of the TP. The High Asia Refined analysis (HAR) is used to analyse the dynamical factors that influence precipitation variability in the TP region, including the factors resulting in the enhancement and suppression of precipitation. Four dynamical fields that can influence precipitation are considered: the 300 hPa wind speed and wind speed 2 km above ground, the 300 hPa vertical wind speed, and the atmospheric water transport. The study focusses on the seasonality and the spatial variability of the precipitation controls and their dominant patterns. Results show that different factors have different effects on precipitation in different regions and seasons. This depends mainly on the dominant type of precipitation, i.e. convective or frontal/cyclonic precipitation. Additionally, the study reveals that the midlatitude westerlies have a high impact on the precipitation distribution on the TP and its surroundings year-round and not only in winter.


2020 ◽  
Author(s):  
Tobias Bolch ◽  
Philipp Rastner ◽  
Jan Bouke Pronk ◽  
Atanu Bhattacharya ◽  
Lin Liu ◽  
...  

<p>Rock glaciers and other ice-debris landforms (I-DLs) are an important part of the debris-transport system in high mountains and their internal ice could provide a relevant contribution to water supply especially in dry regions. Recent research has shown that I-DLs are abundant in High Mountain Asia, but knowledge about their occurrence and characteristics is still limited.</p><p>We are therefore investigating I-DLs in the Poiqu basin (~28°17´N, 85°58´E) – central Himalaya/southern Tibetan Plateau using remote sensing aided by field observations. We use very high-resolution stereo Pleiades data from the contemporary period and stereo Corona and Hexagon data from the 1970s to generate digital elevation models, applied satellite radar interferometry based on ALOS-1 PALSAR and Sentinel-1 SAR data and feature tracking using Sentinel-2 and the Pleiades data. Generated DEMs allowed us to create a hillshade to support identification, to derive their topographical parameters and to investigate surface elevation changes. I-DLs were identified and classified based on their characteristic shape, their surface structure and surface movement. Field observationssupported the identification of the landforms.</p><p>We found abundant occurrence of rock glaciers (with typical characteristics like lobate-shaped forms, ridges and furrows as well as steep fronts) but also significant movements of both former lateral moraines and debris-slopes in permafrost area. Preliminary results revealed the occurrence of more than 350 rock glaciers covering an area of about 21 km<sup>2</sup>. About 150 of them are active. The largest rock glacier has an area of 0.5 km<sup>2</sup> and three have an area of more than 0.3 km<sup>2</sup>. The rock glaciers are located between ~3715 m and ~5850 m with a mean altitude of ~5075 m a.s.l.. The mean slope of all rock glaciers is close to 17.5° (min. 6.8°, max. 37.6°). Most of the rock glaciers face towards the Northeast (19%) and West (18.5%). Surface elevation changes between the 1970s and 2018 show no significant changes but indicate slight elevation gain at the front of active rock glaciers caused by their downward movements.</p><p>Work will be continued to generate an inventory of all I-DLs in the study area including information about their activity and surface elevation changes.</p>


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3271
Author(s):  
Alexandra Hamm ◽  
Anselm Arndt ◽  
Christine Kolbe ◽  
Xun Wang ◽  
Boris Thies ◽  
...  

Precipitation is a central quantity of hydrometeorological research and applications. Especially in complex terrain, such as in High Mountain Asia (HMA), surface precipitation observations are scarce. Gridded precipitation products are one way to overcome the limitations of ground truth observations. They can provide datasets continuous in both space and time. However, there are many products available, which use various methods for data generation and lead to different precipitation values. In our study we compare nine different gridded precipitation products from different origins (ERA5, ERA5-Land, ERA-interim, HAR v2 10 km, HAR v2 2 km, JRA-55, MERRA-2, GPCC and PRETIP) over a subregion of the Central Himalaya and the Southwest Tibetan Plateau, from May to September 2017. Total spatially averaged precipitation over the study period ranged from 411 mm (GPCC) to 781 mm (ERA-Interim) with a mean value of 623 mm and a standard deviation of 132 mm. We found that the gridded products and the few observations, with few exceptions, are consistent among each other regarding precipitation variability and rough amount within the study area. It became obvious that higher grid resolution can resolve extreme precipitation much better, leading to overall lower mean precipitation spatially, but higher extreme precipitation events. We also found that generally high terrain complexity leads to larger differences in the amount of precipitation between products. Due to the considerable differences between products in space and time, we suggest carefully selecting the product used as input for any research application based on the type of application and specific research question. While coarse products such as ERA-Interim or ERA5 that cover long periods but have coarse grid resolution have previously shown to be able to capture long-term trends and help with identifying climate change features, this study suggests that more regional applications, such as glacier mass-balance modeling, require higher spatial resolution, as is reproduced, for example, in HAR v2 10 km.


2010 ◽  
Vol 7 (1) ◽  
pp. 345-387 ◽  
Author(s):  
M. Huss ◽  
G. Jouvet ◽  
D. Farinotti ◽  
A. Bauder

Abstract. Climate warming is expected to significantly affect the runoff regime of mountainous catchments. Simple methods for calculating future glacier change in hydrological models are required in order to efficiently project economic impacts of changes in the water cycle over the next decades. Models for temporal and spatial glacier evolution need to describe the climate forcing acting on the glacier and ice flow dynamics. Flow models, however, demand considerable computation power and field data input and are moreover not applicable on the regional scale. Here, we propose a simple parameterization for calculating the change in glacier surface elevation and area, which is mass conserving and suited for hydrological modelling. The Δh-parameterization is an empirical glacier-specific function derived from observations in the past that can easily be applied to large samples of glaciers. We validate the Δh-parameterization against results of a 3-D finite-element ice flow model. In case studies the evolution of two Alpine glaciers of different size over the period 2008–2100 is investigated using regional climate scenarios. The parameterization closely reproduces the distributed ice thickness change, as well as glacier area and length predicted by the ice flow model. This indicates that for the purpose of transient runoff forecasts, future glacier geometry change can be approximated using a simple parameterization instead of complex ice flow modelling. Furthermore, we analyse alpine glacier response to 21st century climate change and consequent shifts in the runoff regime of a highly glacierized catchment using the proposed methods.


2020 ◽  
Author(s):  
Lena Märki ◽  
Maarten Lupker ◽  
Ananta Gajurel ◽  
Hannah Gies ◽  
Negar Haghipour ◽  
...  

<p>Soil erosion in high mountain ranges plays an important role in redistributing soil organic carbon across landscapes and may influence the global climate on different timescales [1, 2]. Here, we investigate the dynamics of soil organic matter export in the steep mountain belt of the Himalaya by tracing the provenance of soil-derived lipids in riverine sediments from nested catchments with areas ranging from 370 to 57700 km<sup>2</sup>.</p><p>Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a suite of lipids that occur ubiquitously in soils [3, 4]. Their isomer distribution depends on environmental parameters such as the mean annual temperature of the local environment [3]. In this study, we explore the use of brGDGT distributions as a proxy for the altitudinal provenance of soil organic matter in riverine sediments of the Central Himalaya of Nepal. BrGDGT distributions in soils collected along an altitudinal profile, spanning elevations from 200 to 4450 m asl, yield a robust calibration of soil signatures as a function of elevation. This calibration is then used to trace the provenance of soil organic matter exported from their catchments and entrained in suspended sediments of rivers draining the Central Himalaya.</p><p>We show that brGDGT compositions of fluvial sediments accurately reflect the mean elevation of the soil-cover in their respective watersheds. The type of land-cover does not seem to have a significant influence on the export of organic matter at a catchment scale. We, therefore, conclude that soil organic matter mobilization in the Himalaya occurs pervasively, and is currently insensitive to anthropogenic perturbations.</p><p> </p><p> </p><p> </p><p>[1] Stockmann et al., 2013 – Agriculture, Ecosystems and Environment, 164</p><p>[2] France-Lanord & Derry, 1997 – Nature, 390</p><p>[3] Weijers et al., 2007 – Geochimica et Cosmochimica Acta, 71</p><p>[4] Schouten et al., 2013 – Organic Geochemistry, 54</p>


2017 ◽  
Vol 5 (1) ◽  
pp. e1258 ◽  
Author(s):  
Duncan Quincey ◽  
Megan Klaar ◽  
Daniel Haines ◽  
Jon Lovett ◽  
Bishnu Pariyar ◽  
...  

2013 ◽  
Vol 1 (1) ◽  
pp. 1-9
Author(s):  
Viktor Kaufmann ◽  
Markus Dorn ◽  
Gian-Philipp Patri ◽  
Stefan Reimond ◽  
Wolfgang Sulzer

Sign in / Sign up

Export Citation Format

Share Document