vertical wind speed
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. 0309524X2110463
Author(s):  
Feriel Adli ◽  
Nawel Cheggaga ◽  
Farouk Hannane ◽  
Leila Ouzeri

The main objective of this paper is to develop a predictive model of vertical wind speed profile. Response surface methodology (RSM) is used for this purpose. RSM is a set of statistical and mathematical techniques useful for the development, improvement and optimisation of processes. It is mainly used in industrial processes and is successfully applied in this paper to model the wind speed at the hub height of the wind turbine. An unconventional model is adopted due to the nature of the input parameters which cannot be controlled or modified. The model validation indicators, namely correlation coefficient ([Formula: see text]) and root mean square error (RMSE = 1.02), give excellent results when comparing predicted and measured wind speeds. For the same data, the RSM model gives a better RMSE compared to the conventional power law and the artificial neural network.


2021 ◽  
Author(s):  
Nobuhiro Takahashi ◽  
Takeharu Kouketsu

<p>One of the major characteristics of dual-frequency precipitation radar (DPR) onboard Global Precipitation Measurement (GPM) core satellite, is estimation of cloud physical properties of precipitation such as drop size distribution (DSD), existence of hail/graupel particles and possibly the mixed phase region above freezing height.  In this study, ground-based X-band radar network data are utilized for evaluate the cloud physical products from GPM/DPR.  The X-band radar network, composed of 39 X-band dual polarimetric radars developed by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan, called XRAIN[1] is utilized for the evaluation.  The XRAIN radar completes volume scan up to the elevation angle of 20 degrees in 5 minutes.  By using multiple radars, three dimensional wind field is estimated by using the dual-Doppler analysis technique. In this analysis DSD parameter from DPR (which is called epsilon in DPR product) and dual frequency ratio (DFR) that correlate well median diameter of DSD are compared with ZDR and KDP from XRAIN data.  The vertical wind data from XRAIN is utilized to characterize the Z of DPR. The case on August 27, 2018, on which GPM satellite flew over a hail producing convective storm around Tokyo, is analyzed.  Comparison of three dimensional structure of the storm between KuPR (Ku-band radar of DPR) and XRAIN from multiple radar observations shows that both observations are quite similar each other except for the KuPR observation show rather larger volume because of the larger footprint size.  At the rain region (below freezing height), the DSD parameter of DPR (epsilon) and DFR correlate well with ZDR and KDP from XRAIN, respectively.  This result indicates the DPR algorithm works well to estimate the DSD information of rain.  The comparison of Z with vertical wind speed indicates that the higher Z is characterized as higher variance of vertical wind speed. Above the freezing height, the relationship between both observations are complicated.  This result indicates that the various types of precipitation particles not only solid particles but also liquid/mixed phase particle can exist in the severe convective storm.  The hydrometeor type classification from XRAIN by using the method by Kouketsu et al. (2015) [2] confirms that the various types of precipitation exist in this case.</p><p>References</p><p>[1] Tsuchiya, S., M. Kawasaki, H. Godo, 2015: Improvement of the radar rainfall accuracy of XRAIN by modifying of rainfall attenuation correction and compositing radar rainfall, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 2015, Volume 71, Issue 4, pp. I_457-I_462 (in Japanese with English abstract).</p><p>[2] Kouketsu, T., Uyeda, H., Ohigashi, T., Oue, M., Takeuchi, H., Shinoda, T., Tsuboki, K., Kubo, M., and Muramoto, K., 2015: A Hydrometeor Classification Method for X-Band Polarimetric Radar: Construction and Validation Focusing on Solid Hydrometeors under Moist Environments, Journal of Atmospheric and Oceanic Technology, 32(11), 2052-2074.</p>


2021 ◽  
Author(s):  
Stephanie Evan ◽  
Irene Reinares Martinez ◽  
Frank G. Wienhold ◽  
Jerome Brioude ◽  
Eric J. Jensen ◽  
...  

<p>A nascent in situ cirrus was observed on 11 January 2019 in the tropical tropopause layer (TTL) over the southwestern Indian Ocean, with the use of balloon-borne instruments. Data from CFH (Cryogenic Frost Point Hygrometer) and COBALD (Compact Optical Backscatter and AerosoL Detector) instruments were used to characterize the cirrus and its environment. Optical modeling was employed to estimate the cirrus microphysical<br>properties from the COBALD backscatter measurements. Newly-formed ice crystals with radius <1 μm and concentration ∼500 L <sup>−1</sup> were reported at the tropopause. The relatively low concentration and CFH ice supersaturation (1.5) suggests a homogeneous freezing event stalled by a high-frequency gravity wave. The observed vertical wind speed and temperature anomalies that triggered the cirrus formation were due to a 1.5-km vertical-<br>scale wave, as shown by a spectral analysis. This cirrus observation shortly after nucleation is beyond remote sensing capabilities and presents a type of cirrus never reported before.</p>


2020 ◽  
Author(s):  
Yudi Liu ◽  
Dawei Li ◽  
Lang Huang

<p>To explore the characteristics of the concentric eyewall of a typhoon during its formation and replacement processes, with Super Typhoon Muifa in 2011 as the example case, the Weather Research and Forecast (WRF) mode was used to carry out a numerical simulation to reproduce the entire formation and replacement processes of the concentric eyewall. The physical quantities such as the tangential wind speed, radar echo, radial wind speed, vertical wind speed, and potential vortex were diagnosed and analyzed. The results of the analysis show that the outward expansion of the isovelocity in the lower troposphere was the early signal of the formation of the outer eyewall. After the outer eyewall formed, there was a center of second-highest tangential wind speed in the corresponding area. The second-highest wind speed increased as the strength of the outer eyewall increased, and the position of the second-highest wind speed center was retracted with the retraction of the outer eyewall. The tangential wind speed of the moat area was smaller than that corresponding to the concentric eyewall and this feature gradually disappeared with the increase of the height. The echo in the moat area was weak, and this characteristic was particularly evident when the moat area was relatively wide and the outer eyewall was relatively strong. With the formation and development of the outer eyewall, the intensity of the inflow in the boundary layer corresponding to the inner eyewall was reduced, the intensity of the outflow in the upper layers declined, and the intensities of the inflow and outflow corresponding to the outer eyewall were enhanced. After the second outer eyewall matured, there was a significant inflow in the upper layer of the moat area. Once the outer eyewall formed, a large amount of hydrometeors appeared in the corresponding area, and there was a strong ascending motion inside that area. The strength of the ascending motion and the content of hydrometeors increased as the outer eyewall increased. When the moat area was relatively wide, the divergent airflow generated by the developed outer eyewall in the upper layer would produce a significant descending motion in the moat area.</p>


2020 ◽  
Vol 13 (2) ◽  
pp. 969-983 ◽  
Author(s):  
Matthias Mauder ◽  
Michael Eggert ◽  
Christian Gutsmuths ◽  
Stefan Oertel ◽  
Paul Wilhelm ◽  
...  

Abstract. Accurate measurements of turbulence statistics in the atmosphere are important for eddy-covariance measurements, wind energy research, and the validation of atmospheric numerical models. Sonic anemometers are widely used for these applications. However, these instruments are prone to probe-induced flow distortion effects, and the magnitude of the resulting errors has been debated due to the lack of an absolute reference instrument under field conditions. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of any flow distortion. This novel remote sensing instrument has otherwise very similar spatial and temporal sampling characteristics to the sonic anemometer and hence served as a reference for this comparison. The presented measurements were carried out over flat homogeneous terrain at a measurement height of 30 m. We provide a comparative statistical analysis of the resulting mean wind velocities, the standard deviations of the vertical wind speed and the friction velocity and investigate the reasons for the observed deviations based on the turbulence spectra and co-spectra. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with a comparability of 0.082 and 0.020 m s−1, respectively. Biases for these two quantities were 0.003 and 0.012 m s−1, respectively. Slightly larger differences were observed for friction velocity. Analysis of the corresponding co-spectra showed that the CSAT3B underestimates this quantity systematically by about 3 % on average as a result of co-spectral losses in the frequency range between 0.1 and 5 s−1. We also found that an angle-of-attack-dependent transducer-shadowing correction does not improve the agreement between the CSAT3B and the Physikalisch-Technische Bundesanstalt (PTB) lidar effectively.


Author(s):  
Tonggui Bo ◽  
Yudi Liu ◽  
Dawei Li ◽  
Lang Huang ◽  
Yi Yu

To explore the characteristics of the concentric eyewall of a typhoon during its formation and replacement processes, with Super Typhoon Muifa in 2011 as the example case, the Weather Research and Forecast (WRF) mode was used to carry out a numerical simulation to reproduce the entire formation and replacement processes of the concentric eyewall. The physical quantities such as the tangential wind speed, radar echo, radial wind speed, vertical wind speed, and potential vortex were diagnosed and analyzed. The results of the analysis show that the outward expansion of the isovelocity in the lower troposphere was the early signal of the formation of the outer eyewall. After the outer eyewall formed, there was a center of second-highest tangential wind speed in the corresponding area. The second-highest wind speed increased as the strength of the outer eyewall increased, and the position of the second-highest wind speed center was retracted with the retraction of the outer eyewall. The tangential wind speed of the moat area was smaller than that corresponding to the concentric eyewall and this feature gradually disappeared with the increase of the height. The echo in the moat area was weak, and this characteristic was particularly evident when the moat area was relatively wide and the outer eyewall was relatively strong. With the formation and development of the outer eyewall, the intensity of the inflow in the boundary layer corresponding to the inner eyewall was reduced, the intensity of the outflow in the upper layers declined, and the intensities of the inflow and outflow corresponding to the outer eyewall were enhanced. After the second outer eyewall matured, there was a significant inflow in the upper layer of the moat area. Once the outer eyewall formed, a large amount of hydrometeors appeared in the corresponding area, and there was a strong ascending motion inside that area. The strength of the ascending motion and the content of hydrometeors increased as the outer eyewall increased. When the moat area was relatively wide, the divergent airflow generated by the developed outer eyewall in the upper layer would produce a significant descending motion in the moat area.


2019 ◽  
Vol 34 (4) ◽  
pp. 999-1015 ◽  
Author(s):  
Jia Sun ◽  
Hailun He ◽  
Xiaomin Hu ◽  
Dingqi Wang ◽  
Cen Gao ◽  
...  

Abstract We used a mesoscale atmospheric model to simulate Typhoon Hagupit (2008) in the South China Sea (SCS). First, we chose optimized parameterization schemes based on a series of sensitivity tests. The results suggested that a combination of the Kain–Fritsch cumulus scheme and the Goddard microphysics scheme was the best choice for reproducing both the track and intensity of Typhoon Hagupit. Next, the simulated rainfall was compared with microwave remote sensing products. This comparison validated the model results for both the magnitude of rainfall and the location of heavy rain relative to the typhoon’s center. Furthermore, the potential vorticity and vertical wind speed displayed the asymmetric horizontal and tilted vertical structures of Typhoon Hagupit. Finally, we compared the simulation of air–sea turbulent fluxes with estimations from an in situ buoy. The time series of momentum fluxes were roughly consistent, while the model still overestimated heat fluxes, especially right before the typhoon’s arrival at the buoy.


2019 ◽  
Author(s):  
Matthias Mauder ◽  
Michael Eggert ◽  
Christian Gutsmuths ◽  
Stefan Oertel ◽  
Paul Wilhelm ◽  
...  

Abstract. Accurate measurements of turbulence statistics in the atmosphere are important for eddy-covariance measurements, wind energy research, and the validation of atmospheric numerical models. Sonic anemometers are widely used for these applications. However, these instruments are prone to probe-induced flow distortion effects, and the magnitude of the resulting errors has been debated due to the lack of an absolute reference instrument under field conditions. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of any flow-distortion. This novel remote sensing instrument has otherwise very similar spatial and temporal sampling characteristics as the sonic anemometer and hence served as a reference for this comparison. The presented measurements were carried out over flat homogeneous terrain, at a measurement height of 30 m. We provide a comparative statistical analysis of the resulting mean wind velocities, the standard deviations of the vertical wind speed and the friction velocity and investigate the reasons for the observed deviations based on the turbulence spectra and cospectra. Our results show a very good agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed, with comparabilities of 0.082 and 0.017 m s−1, respectively. Biases for these two quantities were very low, being smaller than 0.01 m s−1, which corresponds to about 1 % in relative terms. Slightly larger differences were observed for friction velocity. Analysis of the corresponding cospectra showed that the CSAT3B underestimates this quantity systematically by about 3 % on average as a result of too steep a drop-off in the inertial sub-range. We also found that an angle-of-attack dependent transducer-shadowing correction does not improve this agreement effectively because it leads to an artificial correlation between the three wind components and therefore severely distorts the shape of the cospectra.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 50
Author(s):  
Alexander Safronov

The causes of aircraft crashes were investigated for several accidents, such as the Tu-154 and the Airbus A320-211 crashes near Sochi, Russia; the Airbus A320-232 crash near the Perpignan airport; and the Airbus A310-324 crash during landing in Moroni, Comoros Islands. Failures related to aircraft aerodynamics caused these air catastrophes. Upon encountering an upward vertical front, the airstream over the plane wing was disrupted and, as a result, the aerodynamic lifting force suddenly and dramatically decreased. The critical value of the vertical wind speed in a sea-land front (SLF) was determined to be ~0.5–1.0 m s−1. Some recommendations are proposed to prevent such aircraft accidents near coastal airfields. Forecast predictions of a sea-land breeze w-Front and of MWT (Mountain Wave Turbulence) were performed by regional atmospheric models with a resolution no lower than 2 km. Further, a possible reason for the sudden disappearance of aircraft near the coast of Florida is suggested.


Author(s):  
Satoru OISHI ◽  
Naoki HAYASHI ◽  
Mariko OGAWA ◽  
Yoshiyuki KAJIKAWA ◽  
Eiichi NAKAKITA

Sign in / Sign up

Export Citation Format

Share Document