How to construct recursive digital filters for baseflow separation

2005 ◽  
Vol 19 (2) ◽  
pp. 507-515 ◽  
Author(s):  
K. Eckhardt
2021 ◽  
Author(s):  
◽  
Lucas Everitt

<p>The representation of groundwater processes in hydrological models is crucial, as the connectivity between groundwater and surface water is significant. It is particularly important for regions such as the Wairarapa that experience high water stresses. Intensified agriculture has increased demand for irrigation, which can lead to depletion and degradation of reservoirs. This study compared observed streamflow records to TopNet-0 and TopNet-GW model outputs at points along the Mangatarere stream, a sub-catchment in the Wairarapa valley, New Zealand. Model performance was assessed using a suite of quantitative and qualitative comparisons. This analysis aimed to assess the similarities and differences between observed flow and the model outputs with respect to their model structures. Baseflow estimates from recursive digital filters were also compared at these sites to assess the groundwater representation of the models. The investigation can be considered representative of the wider Ruamahanga catchment, as the geology and hydrology in the region is relatively analogous. Flow infilling and baseflow separation was undertaken at 13 Wairarapa flow gauges to provide considerations to the model outputs. Options investigated for flow infilling included a straight infill or calculation of the flow difference at each point. Potential multipliers included a long-term or a monthly option. The difference infill, coupled with the long-term multiplier, was found to be the optimum method. Independent baseflow estimates included a Q90/Q50 flow duration curve index and indices generated from the Eckhardt and Bump & Rise recursive digital filters. The two digital filters produced similar statistics but were found to employ uncertain parameters that significantly affect outputs. TopNet-GW benefitted from up-to-date calibrations and as such produced generally excellent simulations in comparison to observed streamflow. With the addition of the deep groundwater conceptual reservoir in the structure of the model, simulated flow baseflow index estimates and graphical assessment of flow recession curves indicate TopNet-GW reproduces groundwater processes well despite potential over-representation of baseflow at the expense of high flow periods during peak flows. These findings highlight the importance of combining subsurface and surface flow dynamics to resolve water management issues and improve model performance at the catchment scale.</p>


Author(s):  
Indarto Indarto ◽  
Elida Novita ◽  
Sri Wahyuningsih ◽  
Nur Defitri Herlinda ◽  
Entin Hidayah

Baseflow is an important component affecting the availability of water in the river during the dry season. Availability of water in the dry season is useful for water resources management. This research aims to test and to compare six recursive digital filters (RDF) methods for calculating baseflow and baseflow index. This research was conducted in Brantas Watershed. Two outlets (sub-watersheds) located at Kertosono and Ploso were used.  Daily discharge from 1996 to 2015 of the two outlets above was used as main input for this study. While rainfall data were used to determine the calibration period. The sequence procedures of this research, consist of: (1) inventory of daily discharge and rainfall data, (2) data processing, (3) calibration, (4) validation, and (5) evaluation of models’ performances.  Six (6) methods of baseflow separation based on recursive digital filters were evaluated. The calibration process was carried out for periods 1996 to 2005.  The periods from July to September was assumed to be the peak of the dry season and then selected for calibration process.  The parameter values were calibrated using the data from dry season for each year. Furthermore, the average value of parameters obtained from calibration period then used to separate baseflow in validation process (periods 2006 to 2015). The result of separation both in calibration and validation are then evaluated using root mean square error (RMSE), coefficient of determination (R²) and FDC. This research shows that the Lyne-Hollick and EWMA filters perform better than other methods. In Brantas Kertosono sub-watershed, the optimal parameter value for Lyne Hollick algoritmh (αly) = 0.995 dan for EWMA filter (αew) = 0.003 and in Brantas Ploso sub-watershed (αly ) = 0.99 dan (αew) = 0.003.


2021 ◽  
Author(s):  
◽  
Lucas Everitt

<p>The representation of groundwater processes in hydrological models is crucial, as the connectivity between groundwater and surface water is significant. It is particularly important for regions such as the Wairarapa that experience high water stresses. Intensified agriculture has increased demand for irrigation, which can lead to depletion and degradation of reservoirs. This study compared observed streamflow records to TopNet-0 and TopNet-GW model outputs at points along the Mangatarere stream, a sub-catchment in the Wairarapa valley, New Zealand. Model performance was assessed using a suite of quantitative and qualitative comparisons. This analysis aimed to assess the similarities and differences between observed flow and the model outputs with respect to their model structures. Baseflow estimates from recursive digital filters were also compared at these sites to assess the groundwater representation of the models. The investigation can be considered representative of the wider Ruamahanga catchment, as the geology and hydrology in the region is relatively analogous. Flow infilling and baseflow separation was undertaken at 13 Wairarapa flow gauges to provide considerations to the model outputs. Options investigated for flow infilling included a straight infill or calculation of the flow difference at each point. Potential multipliers included a long-term or a monthly option. The difference infill, coupled with the long-term multiplier, was found to be the optimum method. Independent baseflow estimates included a Q90/Q50 flow duration curve index and indices generated from the Eckhardt and Bump & Rise recursive digital filters. The two digital filters produced similar statistics but were found to employ uncertain parameters that significantly affect outputs. TopNet-GW benefitted from up-to-date calibrations and as such produced generally excellent simulations in comparison to observed streamflow. With the addition of the deep groundwater conceptual reservoir in the structure of the model, simulated flow baseflow index estimates and graphical assessment of flow recession curves indicate TopNet-GW reproduces groundwater processes well despite potential over-representation of baseflow at the expense of high flow periods during peak flows. These findings highlight the importance of combining subsurface and surface flow dynamics to resolve water management issues and improve model performance at the catchment scale.</p>


Sign in / Sign up

Export Citation Format

Share Document