The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change

2010 ◽  
Vol 24 (9) ◽  
pp. 1123-1132 ◽  
Author(s):  
Lei Wang ◽  
Zhongjing Wang ◽  
Toshio Koike ◽  
Hang Yin ◽  
Dawen Yang ◽  
...  
2019 ◽  
Vol 2 (2) ◽  
pp. 125-131
Author(s):  
Loi Thi Pham ◽  
Khoi Nguyen Dao

Assessing water resources under the influence of environmental change have gained attentions of scientists. The objective of this study was to analyze the impacts of land use change and climate change on water resources in terms quantity and quality in the 3S basin in the period 1981–2008 by using hydrological modeling (SWAT model). The results showed that streamflow and water quality (TSS, T-N, and T-P) tend to increase under individual and combined effects of climate change and land use change. In addition, the impact of land use change on the flow was smaller than the climate change impact. However, water balance components and water quality were equally affected by two factors of climate change and land use change. In general, the results of this study could serve as a reference for water resource management and planning in the river basin.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2658
Author(s):  
Rui Luo ◽  
Shiliang Yang ◽  
Yang Zhou ◽  
Pengqun Gao ◽  
Tianming Zhang

A key challenge to the sustainability and security of grassland capacity is the protection of water-related ecosystem services (WESs). With the change of land use, the supply of aquatic ecosystem services has changed, and the grassland-carrying capacity has been affected. However, the correlation mechanism between WESs and the grassland-carrying capacity is not clear. In this study, we used the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs) model to evaluate the impact of land-use change on WESs, and made a tradeoff analysis between WESs and grassland-carrying capacity. Considering that the Heihe River Basin (HRB) was an important grassland vegetation zone, which was a milestone for the development of animal husbandry in China, HRB was taken as a case. The main findings are as follows: (1) the spatial distribution of WESs shows the dissimilation rule, the upper reaches are the main water yield area, the soil retention is weakening in the middle and lower reaches, and the pollution has further increased in the middle and upper reaches. (2) The carrying capacity of animal husbandry decreased in the upper reaches, increased in Shandan County and Zhangye City in the middle reaches, and decreased sharply in other regions. (3) There was a positive correlation between the livestock-carrying capacity and nitrogen export in 2018, which was increasing. As the change of land use has changed the evapotranspiration structure, WESs have undergone irreversible changes. Meanwhile, the development of large-scale irrigated farmland and human activities would be the source of a further intensification of regional soil erosion and water pollution. Therefore, it is necessary to trade off the WESs and animal husbandry under land-use change. This paper revealed how WESs changed from 2000 to 2018, the characteristics of the changes in the spatial and temporal distribution, and the carrying capacity. It aims to provide a scientific basis for coordinating the contradiction between grassland and livestock resources, improving the regional ecological security situation, and carrying out ecosystem management.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 189 ◽  
Author(s):  
Matjaž Glavan ◽  
Sara Bele ◽  
Miha Curk ◽  
Marina Pintar

Intensive agriculture causes nutrient leaching and accelerates erosion processes, which threatens the good quality status of surface waters, as proposed by the European Union (EU) Water Framework Directive. The purpose of this study was to define the impact of two alternative agricultural land-use change scenarios defined in a Municipal Spatial Plan on surface water quality by using the Agricultural Policy/Environmental eXtender (APEX) model. As experimental area, we chose a small Kožbanjšček stream catchment (1464 ha) situated in the Goriška Brda region in Slovenia. The area, due to favorable conditions for vineyards, is facing increasing deforestation. The change of 66.3 ha of forests to vineyards would increase the sediment, nitrate, and phosphorus loads in the stream by 24.8%, 17.1%, and 10.7%, respectively. With the implementation of vegetative buffer strips as a mitigation measure of the current situation, we could reduce the sediment, nitrate, and phosphorus loads by 17.9%, 11.1%, and 3.1%, respectively, while a combination of the two land-use change scenarios would result in a slight increase of the above-mentioned loads, corresponding to 0.61%, 2.1%, and 6.6%, respectively, compared to the baseline situation. The results confirm that, as we can increase pollution levels with deforestation, we can also reduce water pollution by choosing proper types of land management measures.


2019 ◽  
Vol 11 (5) ◽  
pp. 560 ◽  
Author(s):  
Mingli Wang ◽  
Longjiang Du ◽  
Yinghai Ke ◽  
Maoyi Huang ◽  
Jing Zhang ◽  
...  

Yongding River is the largest river flowing through Beijing, the capital city of China. In recent years, Yongding River Basin (YDRB) has witnessed increasing human impacts on water resources, posing serious challenges in hydrological and ecological health. In this study, remote sensing techniques and statistical time series approaches for hydrological studies were combined to characterize the dynamics and driving factors of reservoir water extents in YDRB during 1985–2016. First, 107 Landsat 4, 5, 7 and 8 images were used to extract surface water extents in YDRB during 1985–2016 using a combination of water indices and Otsu threshold algorithm. Significant positive correlation was found between water extents and the annual inflow for the two biggest reservoirs, the downstream Guanting and upstream Cetian reservoirs, proving their representativeness of surface water availability in this basin. Then, statistical time series approaches including trend-free pre-whitening Mann-Kendall trend test, Pettit change-point test and double mass curve method, which are frequently used in hydrological studies, were adopted to quantify the trend of reservoir water extents dynamics and the relative contributions of climate variability and human activities. Results showed that the water extents in both reservoirs exhibited significant downward trend with change point occurring in 2001 and 2005 for Guanting and Cetian, respectively. About 74%~75% of the shrinkage during the post-change period can be attributed to human activities, among which GDP, population, electricity power production, raw coal production, steel and crude iron production, value of agriculture output, and urban area were the major human drivers. Hydrological connectivity between the upstream Cetian and downstream Guanting reservoirs declined during the post-change period. Since 2012, water extents in both reservoirs recovered as a result of various governmental water management policies including the South-to-North Water Diversion Project. The methodology presented in this study can be used for analyzing the dynamics and driving mechanism of surface water resources, especially for un-gauged or poorly-gauged watersheds.


Sign in / Sign up

Export Citation Format

Share Document