River water quality response under hypothetical climate change scenarios in Tunga-Bhadra river, India

2011 ◽  
Vol 25 (22) ◽  
pp. 3373-3386 ◽  
Author(s):  
S. Rehana ◽  
P. P. Mujumdar
2021 ◽  
Vol 13 (11) ◽  
pp. 6339
Author(s):  
Pankaj Kumar ◽  
Rajarshi Dasgupta ◽  
Shalini Dhyani ◽  
Rakesh Kadaverugu ◽  
Brian Alan Johnson ◽  
...  

Widespread urban expansion around the world, combined with rapid demographic and climatic changes, has resulted in serious pollution issues in many coastal water bodies. To help formulate coastal management strategies to mitigate the impacts of these extreme changes (e.g., local land-use or climate change adaptation policies), research methodologies that incorporate participatory approaches alongside with computer simulation modeling tools have potential to be particularly effective. One such research methodology, called the “Participatory Coastal Land-Use Management” (PCLM) approach, consists of three major steps: (a) participatory approach to find key drivers responsible for the water quality deterioration, (b) scenario analysis using different computer simulation modeling tools for impact assessment, and (c) using these scientific evidences for developing adaptation and mitigation measures. In this study, we have applied PCLM approach in the Kendrapara district of India (focusing on the Brahmani River basin), a rapidly urbanizing area on the country’s east coast to evaluate current status and predict its future conditions. The participatory approach involved key informant interviews to determine key drivers of water quality degradation, which served as an input for scenario analysis and hydrological simulation in the next step. Future river water quality (BOD and Total coliform (Tot. coli) as important parameters) was simulated using the Water Evaluation and Planning (WEAP) tool, considering a different plausible future scenario (to 2050) incorporating diverse drivers and pressures (i.e., population growth, land-use change, and climate change). Water samples (collected in 2018) indicated that the Brahmani River in this district was already moderately-to-extremely polluted in comparison to the desirable water quality (Class B), and modeling results indicated that the river water quality is likely to further deteriorate by 2050 under all of the considered scenarios. Demographic changes emerged as the major driver affecting the future water quality deterioration (68% and 69% for BOD and Tot. coli respectively), whereas climate change had the lowest impact on river water quality (12% and 13% for BOD and Tot. coli respectively), although the impact was not negligible. Scientific evidence to understand the impacts of future changes can help in developing diverse plausible coastal zone management approaches for ensuring sustainable management of water resources in the region. The PCLM approach, by having active stakeholder involvement, can help in co-generation of the coastal management options followed by open access free software, and models can play a relevant cost-effective approach to enhance science-policy interface for conservation of natural resources.


Author(s):  
Mohammad Nazari-Sharabian ◽  
Moses Karakouzian ◽  
Sajjad Ahmad

The Storm Water Management Model (SWMM) was used to evaluate the impact of urbanization, climate change, and implementation of Low Impact Developments (LIDs) at the Mahabad Dam watershed, Iran. Several scenarios of urbanization, with and without climate change impacts, in different locations were defined, including near outlet, middle, far end, and whole watershed. Climate change was considered to change the intensity of rainfall and increase evaporation. Vegetative swales were implemented as LIDs to evaluate their applicability to reduce pollutant loads. Digital Elevation Model (DEM) of the area was input into ArcGIS, and the watershed was delineated using the ArcSWAT extension to identify topographic features. Water quality properties were defined in the software, and each scenario was run for a twelve-hour simulation. The results indicated that urbanization affects the imperviousness of sub-catchments, and location of urbanization affects the amount and timing of runoff and pollutant yields. Fifty-percent urbanization near the watershed outlet resulted in 23.1% and 27.4% increases in runoff and pollutant loads, respectively. Fifty-percent urbanization in the middle resulted in 28.8% and 35.4% increases in runoff and pollutant loads; and, at the far end, 23.1% and 3.9% increases in runoff and pollutant loads were the result; Fifty-percent urbanizing the whole watershed gave 58.6% and 66.3% increases in runoff and pollutant loads, respectively; Under climate change scenarios (higher intensity, shorter duration rainfall) peaks occurred earlier. Moreover, results showed LIDs decreased pollution loads up to 25%.


2012 ◽  
Vol 212-213 ◽  
pp. 137-140 ◽  
Author(s):  
Chou Ping Yang ◽  
Yao Ting Yu ◽  
Chih Ming Kao

In these years, the global climate change has caused the increase in storm and drought frequency. In August 2009, Taiwan experienced its worst floods in 50 years after Typhoon Morakot struck almost the entire southern region. During the three-day event, Typhoon Morakot brought copious amounts of rainfall, peaking at 2,500 mm, which triggered severe flooding throughout the region. The Kaoping River Basin was one of the most impacted regions in southern Taiwan. A huge amount of sediments and debris flowed into the Kaoping River Basin, which caused high concentration of suspended sediment in the river causing the shut down of water treatment plants. In addition, the Kaoping River receiving significant biochemical oxygen demand (BOD) and ammonia loads from hog farms and domestic wastewaters and resulted in the deterioration of water quality. The Water Quality Simulation Program (WASP)/EUTRO model was used to simulate the fate and transport of water quality pollutants and develop water quality management strategies. The developed strategies are able to effectively control the pollutants and improve the Kaoping River water quality.


2020 ◽  
Author(s):  
Anna Lintern ◽  
Natalie Kho ◽  
Danlu Guo ◽  
Shuci Liu ◽  
Clement Duvert

<p>Using historical data to identify future water quality trends</p><ol><li>Lintern</li> <li>Kho</li> <li>Guo</li> <li>Liu</li> <li>Duvert</li> </ol><p> </p><p>Climate change is expected to have a severe impact on water resources management in Australia. This is expected to lead to increasing frequency in extreme hydrological events such as droughts and floods, which will in turn contribute to higher risks of bushfires, fish kills, and water shortage for both humans and the environment. The potential impacts of these climate-change-induced extreme events on the quantity of water available to humans and the environment are relatively well understood. However, we have little understanding of the effect on the water quality of Australian rivers. This project aims to start filling this gap in our understanding.</p><p>Our key objectives are:</p><p>(1) to identify how extreme hydrological events such as droughts and floods have affected river water quality over the last two decades, and explore how spatially variable these impacts have been across the Australian continent.</p><p>(2) to use these past observations as a basis to predict how river water quality will be affected by climate change across the continent, and identify the locations within Australia that will be most vulnerable to water quality deterioration in the near future.</p><p>There is a wealth of historical water quality data for each state in Australia, but these datasets have not yet been investigated systematically to develop a nation-wide understanding of water quality patterns. We believe that only a continental-scale understanding of the response of river water quality to extreme hydrological events will allow for the development of robust predictive models of climate change impacts on water quality. Knowing the potential hotspots for future water quality deterioration will be a key step towards identifying priorities for catchment planning and management.</p><p>In this poster, we will present the preliminary findings of this project by detailing the spatial variability in the impact of hydrological events on water quality across the state of Victoria in South-East Australia.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 1254
Author(s):  
Gianbattista Bussi ◽  
Paul G. Whitehead ◽  
Li Jin ◽  
Meron T. Taye ◽  
Ellen Dyer ◽  
...  

Assessing the impact of climate change and population growth on river water quality is a key issue for many developing countries, where multiple and often conflicting river water uses (water supply, irrigation, wastewater disposal) are placing increasing pressure on limited water resources. However, comprehensive water quality datasets are often lacking, thus impeding a full-scale data-based river water quality assessment. Here we propose a model-based approach, using both global datasets and local data to build an evaluation of the potential impact of climate changes and population growth, as well as to verify the efficiency of mitigation measures to curb river water pollution. The upper Awash River catchment in Ethiopia, which drains the city of Addis Ababa as well as many agricultural areas, is used as a case-study. The results show that while decreases in runoff and increases in temperature due to climate change are expected to result in slightly decreased nutrient concentrations, the largest threat to the water quality of the Awash River is population growth, which is expected to increase nutrient loads by 15 to 20% (nitrate) and 30 to 40% (phosphorus) in the river by the second half of the 21st century. Even larger increases are to be expected downstream of large urban areas, such as Addis Ababa. However, improved wastewater treatment options are shown to be efficient in counteracting the negative impact of population growth and returning water pollution to acceptable levels.


Sign in / Sign up

Export Citation Format

Share Document