scholarly journals Granulocyte/macrophage-colony stimulating factor and interleukin-4 expand and activate type-1 dendritic cells (DC1) when administeredin vivo to cancer patients

2003 ◽  
Vol 107 (2) ◽  
pp. 256-261 ◽  
Author(s):  
Sylvia M. Kiertscher ◽  
Barbara J. Gitlitz ◽  
Robert A. Figlin ◽  
Michael D. Roth
Blood ◽  
2002 ◽  
Vol 99 (10) ◽  
pp. 3725-3734 ◽  
Author(s):  
LiQi Li ◽  
Daorong Liu ◽  
Lindsey Hutt-Fletcher ◽  
Andrew Morgan ◽  
Maria G. Masucci ◽  
...  

Epstein-Barr virus (EBV) is a tumorigenic human herpesvirus that persists for life in healthy immunocompetent carriers. The viral strategies that prevent its clearance and allow reactivation in the face of persistent immunity are not well understood. Here we demonstrate that EBV infection of monocytes inhibits their development into dendritic cells (DCs), leading to an abnormal cellular response to granulocyte macrophage–colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) and to apoptotic death. This proapoptotic activity was not affected by UV inactivation and was neutralized by EBV antibody-positive human sera, indicating that binding of the virus to monocytes is sufficient to alter their response to the cytokines. Experiments with the relevant blocking antibodies or with mutated EBV strains lacking either the EBV envelope glycoprotein gp42 or gp85 demonstrated that interaction of the trimolecular gp25–gp42–gp85 complex with the monocyte membrane is required for the effect. Our data provide the first evidence that EBV can prevent the development of DCs through a mechanism that appears to bypass the requirement for viral gene expression, and they suggest a new strategy for interference with the function of DCs during the initiation and maintenance of virus-specific immune responses.


Blood ◽  
2001 ◽  
Vol 98 (13) ◽  
pp. 3520-3526 ◽  
Author(s):  
Pia Björck

Abstract Interferon α/β plays an important role in the first-line defense against viral infections and can modulate cytokine responses by T-helper cells. Type 1 interferons (IFNs) are clinically important in infectious diseases and in the treatment of leukemia and lymphomas. Many different cell types have the capacity to produce IFN-α after encounter with virus and bacteria. The major, natural type 1 IFN–producing cell in humans was recently described as the plasmacytoid T cell, or pDC2, and it can differentiate into dendritic cells (DCs) on culture. This study describes the murine natural IFN-α–producing cell, or pDC2, that shares morphologic features with its human counterpart but has some distinct phenotypical characteristics. Murine plasmacytoid DCs can be differentially isolated based on their expression of CD11c, B220 (CD45R), and Thy1.2 (CD90). They lack expression of myeloid (eg, CD11b) antigens and CD8α, a marker used to isolate lymphoid DCs. Like human pDC2, murine plasmacytoid DCs exhibit their maximal type 1 IFN–producing capacity at a precursor stage; pDCs isolated from bone marrow responded to viral stimulation with higher IFN-α production than cells of the same phenotype isolated from spleen. Mobilization of mice with Flt3 ligand (Flt3L) or Flt3L and granulocyte-macrophage colony-stimulating factor, hematopoietic factors that specifically enhance DC growth, resulted in strikingly increased numbers of pDC in bone marrow and spleen. The isolation of this novel murine DC subset may serve as a useful tool in the study of viral immunobiology and for the design of treatments for murine malignancies.


2003 ◽  
Vol 60 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Miodrag Colic ◽  
Dusan Jandric ◽  
Zorica Stojic-Vukanic ◽  
Jelena Antic-Stankovic ◽  
Petar Popovic ◽  
...  

Several laboratories have developed culture systems that allow the generation of large numbers of human dendritic cells (DC) from monocytes using granulocyte-macrophage colony stimulating factor (GM-CSF), and interleukin-4 (IL-4). In this work we provided evidence that GM-CSF (100 ng/ml) in combination with a low concentration of IL-4 (5 ng/ml) was efficient in the generation of immature, non-adherent, monocyte-derived DC as the same concentration of GM-CSF, and ten times higher concentration of IL-4 (50 ng/ml). This conclusion was based on the similar phenotype profile of DC such as the expression of CD1a, CD80, CD86, and HLA-DR, down-regulation of CD14, and the absence of CD83, as well as on their similar allostimulatory activity for T cells. A higher number of cells remained adherent in cultures with lower concentrations of IL-4 than in cultures with higher concentrations of the cytokine. However, most of these adherent cells down-regulated CD14 and stimulated the proliferation of alloreactive T cells. In contrast adherent cells cultivated with GM-CSF alone were predominantly macrophages as judged by the expression of CD14 and the inefficiency to stimulate alloreactive T cells. DC generated in the presence of lower concentrations of IL-4 had higher proapoptotic potential for the Jurkat cell line than DC differentiated with higher concentrations of IL-4, suggesting their stronger cytotoxic, anti-tumor effect.


Sign in / Sign up

Export Citation Format

Share Document