Effect of Molecular Symmetry and Intermolecular Halogen-Halogen Interactions on the Crystal Structures of Halogen-Substituted Benzoic Acids. X-ray Crystal Structure ofm-Iodobenzoic Acid

1985 ◽  
Vol 25 (3-4) ◽  
pp. 320-326 ◽  
Author(s):  
Anjali A. Patil ◽  
David Y. Curtin ◽  
Iain C. Paul
1993 ◽  
Vol 46 (10) ◽  
pp. 1535 ◽  
Author(s):  
DE Lynch ◽  
G Smith ◽  
NJ Calos ◽  
CHL Kennard ◽  
AK Whittaker ◽  
...  

The 1:1 adducts of triphenylphosphine oxide with the 2-, 3- and 4-nitro-, 3,5-dinitro-, and 2,4,6-trinitro-substituted benzoic acids have been prepared, and characterized by infrared and 31P n.m.r. spectroscopy. The crystal structures of two of these adducts, (triphenylphosphine oxide-3,5-dinitrobenzoic acid) and ( triphenylphosphine oxide-2,4,6-trinitrobenzoic acid), have been determined by X-ray diffraction. In all examples, the presence of single directed hydrogen bonds between the phosphoryl oxygen and the carboxylic acid proton is confirmed. For the X-ray structures, the O…O distances are 2.54(4) and 2.55(1)Ǻ respectively. Solid-state 31P n.m.r. spectroscopy has also proved a convenient technique for the detection of the presence of a single conformational adduct type in cocrystals.


1998 ◽  
Vol 51 (11) ◽  
pp. 1019 ◽  
Author(s):  
Daniel E. Lynch ◽  
Graham Smith ◽  
Karl A. Byriel ◽  
Colin H. L. Kennard

Five adducts consisting of carboxylic acid-substituted indoles with nitro-substituted benzoic acids have been synthesized and tested for second-order non-linear optical properties. These were indole-2-carboxylic acid with 2,4-dinitrobenzoic acid (1), 3,5-dinitrobenzoic acid (2), and 2,4,6-trinitrobenzoic acid (3), and indole-3-acetic acid with 3,5-dinitrobenzoic acid (4), and 2,4,6-trinitrobenzoic acid (5). Compound (2) produced clear, yellow crystals (space group P -1 with a 6·8400(7), b 15·150(2), c 16·097(2) Å, α 84·911(9), β 87·088(10), γ 77·865(9)°, Z 4) which allowed the structure to be determined by X-ray diffraction. Of the five adducts, compounds (3) and (5) gave second harmonic intensities of 0·15 and 0·16 times respectively that of a urea standard.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Ilya V. Kornyakov ◽  
Sergey V. Krivovichev

Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, whereas that of 2 is the most complex in the family.


Author(s):  
William W. Brennessel ◽  
John E. Ellis

The reaction of the [K(18-crown-6)(thf)2]1+ (thf is tetrahydrofuran) salt of bis(anthracene)ferrate(−1), or [Fe(C14H10)2]−, with 2,6-dimethylphenyl isocyanide (CNXyl) in thf resulted in the formation of two new iron isocyanide complexes, namely, [(1,2,3,4-η)-anthracene]tris(2,6-dimethylphenyl isocyanide)iron, [Fe(C14H10)(C9H9N)3] or [Fe(1,2,3,4-η-C14H10)(CNXyl)3], and {5,6-bis(2,6-dimethylanilino)-3-(2,6-dimethylphenyl)-1,2,7-tris[(2,6-dimethylphenyl)imino]-3-azoniahept-3-ene-1,4,7-triido}tris(2,6-dimethylphenyl isocyanide)iron tetrahydrofuran disolvate, [Fe(C54H56N6)(C9H9N)3]·2C4H8O or [Fe(C54H56N6)(CNXyl)3]·2C4H8O, which were characterized by single-crystal X-ray diffraction. The former is likely an intermediate along the path to the known homoleptic [Fe(CNXyl)5], while the latter contains a tridentate ligand that is formed from the `coupling' of six CNXyl ligands. A third crystal structure from this reaction, (7-methylindol-1-ido-κN)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6 O)potassium, [K(C9H8N)(C12H24O6)] or [K(C9H8N)(18-crown-6)], contains a 7-methylindol-1-ide anion, in which one CNXyl ligand has shed a proton during its reductive cyclization.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 181 ◽  
Author(s):  
Peter Paufler ◽  
Stanislav K. Filatov

At the dawn of crystal structure analysis, the close personal contact between researchers in Russia and Germany, well documented in the “Zeitschrift für Krystallographie und Mineralogie”, contributed significantly to the evolution of our present knowledge of the crystalline state. The impact of the Russian crystallographer E. S. Fedorov upon German scientists such as A. Schoenflies and P. Groth and the effect of these contacts for Fedorov are highlighted hundred years after the death of the latter. A creative exchange of ideas paved the way for the analysis of crystal structures with the aid of X-ray diffraction.


2002 ◽  
Vol 2002 (10) ◽  
pp. 473-474 ◽  
Author(s):  
H.Z. Alkhathlan ◽  
M.A. Al-Saad ◽  
H.M. Al-Hazimi ◽  
K.A. Al-Farhan ◽  
A.A. Mousa

Novel spiro 1,3-benzoxazine dimers are obtained when hydrazones of 2-hydroxyacetophenone are treated with triphosgene. An X-ray crystal structure, and the NMR and mass spectra of these new compounds, are reported and discussed.


1996 ◽  
Vol 74 (9) ◽  
pp. 1671-1681 ◽  
Author(s):  
Jack Passmore ◽  
Paul D. Boyle ◽  
Gabriele Schatte ◽  
Todd Way ◽  
T. Stanley Cameron

Alternative and, in some cases, improved syntheses of the salts MX3(As/Sb)F6 (M = S, Se) and SCl3(SbCl6/AlCl4) are described. In addition, the synthesis of SeCl3SbF6 is reported. The compounds were characterized by FT–Raman spectroscopy and the X-ray crystal structures of SeCl3AsF6 (also 77Se NMR) and a new phase of SBr3SbF6 were determined. Crystals of SeCl3AsF6 and SBr3SbF6 are monoclinic, space group P21/c with [values for SBr3SbF6 in brackets] a = 7.678(1) [8.137(1)] Å, b = 9.380(3) [9.583(2)] Å, c = 11.920(3) [12.447(2)] Å, β = 98.19(2)° [97.36(1)]°, V = 849.72(3) [962.6(3)] Å3,z = 4, Dx = 2.925 [3.502] Mg m−3, R = 0.0525 [0.055], and Rw = 0.0554 [0.060] for 1151 [1472] observed reflections. Key words: MX3+ salts, FT–Raman spectroscopy, X-ray crystal structures of SeCl3AsF6, SBr3SbF6, and preparation of SeCl3SbF6.


Author(s):  
M. L. Fornasini ◽  
A. Saccone

AbstractThe crystal structures of two phases in the neodymium-gold system were determined by single crystal X-ray diffractometer methods,


1997 ◽  
Vol 50 (10) ◽  
pp. 977 ◽  
Author(s):  
Daniel E. Lynch ◽  
Graham Smith ◽  
Karl A. Byriel ◽  
Colin H. L. Kennard

A series of molecular adducts of the isomeric aminobenzoic acids with the nitro-substituted Lewis bases 2-chloro-5-nitropyridine, 5-nitroquinoline and 5-nitroisoquinoline has been prepared and characterized by using infrared spectroscopy and X-ray powder diffraction, and in four cases by single-crystal X-ray diffraction methods. These four compounds are the adducts of 3-aminobenzoic acid with 5-nitroquinoline [(C7H7NO2)(C9H6N2O2)], 4-aminobenzoic acid with 5-nitroquinoline [(C7H7NO2)2(C9H6N2O2)], 2-aminobenzoic acid with 5-nitroisoquinoline [(C7H7NO2)(C9H6N2O2)] and 4-aminobenzoic acid with 5-nitroisoquinoline [(C7H7N2O2)(C9H6N2O2)]. Other compounds described are the (1 : 1) adducts of 4-aminobenzoic acid with 2-chloro-5-nitropyridine, and 2-aminobenzoic acid with 5-nitroquinoline. All adducts involve hydrogen-bonding network associations while in none of the examples is any proton transfer involved.


1995 ◽  
Vol 48 (12) ◽  
pp. 1933 ◽  
Author(s):  
CT Abrahams ◽  
GB Deacon ◽  
CM Forsyth ◽  
WC Patalinghug ◽  
BW Skelton ◽  
...  

With the facile displacement being utilized of thf from Yb(pin)2(thf)4 (pin = 2-phenylindol-1-yl, thf = tetrahydrofuran) in toluene solution, the complexes Yb(pin)2(dme)2 (dme = 1,2- dimethoxyethane), Yb(pin)2 (tmen)(tmen = N,N,N′,N′-tetramethylethane-1,2-diamine) and Yb(pin)2(diglyme)(thf) (diglyme = bis(2-methoxyethyl) ether) have been prepared from the respective ligands and Yb(pin)2(thf)4. Yb(pin)2 (diglyme) (thf) [monoclinic, space group P 21 /c, a 15.35(1), b 16.179(5), c 14.45(2) Ǻ, β 107.51(8)°, Z 4, R 0.044 for 2956 (I > 3σ(I)) 'observed' reflections] has a monomeric six-coordinate structure with transoid nitrogen donor atoms, N-Yb-N 143.6(4)° and an irregular coordination polyhedron described as either a distorted trigonal prism or a monocapped square pyramid. Attempted crystallization of Yb(pin)2 (thf) by partial desolvation of Yb(pin)2(thf)4 in hot toluene, containing a trace of dme, gave a mixture of red Yb(pin)2(thf) and orange [Yb(pin)2(dme)]2. The latter was independently synthesized by partial desolvation of Yb(pin)2(dme)2 in toluene. An X-ray crystal structure showed [Yb(pin)2(dme)]2 [monoclinic, space group P 21/c, a 11 .614(2), b 15.945(7), c 15.327(4) Ǻ, β 110.19(2)°, Z 2 dimers, R 0.070 for 2314 (I ≥ 3σ(I)) 'observed' reflections] to be a dimer with two bridging pin ligands, coordinated through nitrogen only. There is an approximately square pyramidal five-coordinate ytterbium environment with an apical dme oxygen, and with two bridging nitrogens, a terminal nitrogen, and a dme oxygen in the basal plane.


Sign in / Sign up

Export Citation Format

Share Document