scholarly journals Crystal Chemical Relations in the Shchurovskyite Family: Synthesis and Crystal Structures of K2Cu[Cu3O]2(PO4)4 and K2.35Cu0.825[Cu3O]2(PO4)4

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Ilya V. Kornyakov ◽  
Sergey V. Krivovichev

Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, whereas that of 2 is the most complex in the family.

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1016
Author(s):  
Natalya A. Kabanova ◽  
Taras L. Panikorovskii ◽  
Vladimir V. Shilovskikh ◽  
Natalya S. Vlasenko ◽  
Victor N. Yakovenchuk ◽  
...  

The Na2−nHn[Zr(Si2O7)]∙mH2O family of minerals and related compounds (n = 0–0.5; m = 0.1) consist of keldyshite, Na3H[Zr2(Si2O7)2], and parakeldyshite, Na2[Zr(Si2O7)], and synthetic Na2[Zr(Si2O7)]∙H2O. The crystal structures of these materials are based upon microporous heteropolyhedral frameworks formed by linkage of Si2O7 groups and ZrO6 octahedra with internal channels occupied by Na+ cations and H2O molecules. The members of the family have been studied by the combination of theoretical (geometrical–topological analysis, Voronoi migration map calculation, structural complexity calculation), and empirical methods (single-crystal X-ray diffraction, microprobe analysis, and Raman spectroscopy for parakeldyshite). It was found that keldyshite and parakeldyshite have the same fsh topology, while Na2ZrSi2O7∙H2O is different and has the xat topology. The microporous heteropolyhedral frameworks in these materials have a 2-D system of channels suitable for the Na+-ion migration. The crystal structure of keldyshite can be derived from that of parakeldyshite by the Na+ + O2− ↔ OH− + □ substitution mechanism, widespread in the postcrystallization processes in hyperagpaitic rocks.


Author(s):  
William W. Brennessel ◽  
John E. Ellis

The reaction of the [K(18-crown-6)(thf)2]1+ (thf is tetrahydrofuran) salt of bis(anthracene)ferrate(−1), or [Fe(C14H10)2]−, with 2,6-dimethylphenyl isocyanide (CNXyl) in thf resulted in the formation of two new iron isocyanide complexes, namely, [(1,2,3,4-η)-anthracene]tris(2,6-dimethylphenyl isocyanide)iron, [Fe(C14H10)(C9H9N)3] or [Fe(1,2,3,4-η-C14H10)(CNXyl)3], and {5,6-bis(2,6-dimethylanilino)-3-(2,6-dimethylphenyl)-1,2,7-tris[(2,6-dimethylphenyl)imino]-3-azoniahept-3-ene-1,4,7-triido}tris(2,6-dimethylphenyl isocyanide)iron tetrahydrofuran disolvate, [Fe(C54H56N6)(C9H9N)3]·2C4H8O or [Fe(C54H56N6)(CNXyl)3]·2C4H8O, which were characterized by single-crystal X-ray diffraction. The former is likely an intermediate along the path to the known homoleptic [Fe(CNXyl)5], while the latter contains a tridentate ligand that is formed from the `coupling' of six CNXyl ligands. A third crystal structure from this reaction, (7-methylindol-1-ido-κN)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6 O)potassium, [K(C9H8N)(C12H24O6)] or [K(C9H8N)(18-crown-6)], contains a 7-methylindol-1-ide anion, in which one CNXyl ligand has shed a proton during its reductive cyclization.


2018 ◽  
Vol 74 (8) ◽  
pp. 936-943
Author(s):  
Galina V. Kiriukhina ◽  
Olga V. Yakubovich ◽  
Ekaterina M. Kochetkova ◽  
Olga V. Dimitrova ◽  
Anatoliy S. Volkov

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63 mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A + ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 181 ◽  
Author(s):  
Peter Paufler ◽  
Stanislav K. Filatov

At the dawn of crystal structure analysis, the close personal contact between researchers in Russia and Germany, well documented in the “Zeitschrift für Krystallographie und Mineralogie”, contributed significantly to the evolution of our present knowledge of the crystalline state. The impact of the Russian crystallographer E. S. Fedorov upon German scientists such as A. Schoenflies and P. Groth and the effect of these contacts for Fedorov are highlighted hundred years after the death of the latter. A creative exchange of ideas paved the way for the analysis of crystal structures with the aid of X-ray diffraction.


1999 ◽  
Vol 54 (1) ◽  
pp. 26-29 ◽  
Author(s):  
Miguel Monge Oroz ◽  
Annette Schier ◽  
Hubert Schmidbaur

Mononuclear coordination compounds of the type (R3P)AuSiR′3 with R = R’ = Ph and R = Me, R′ = Ph have been obtained from reactions of the corresponding halide complexes (R3P)AuCl with the silyllithium reagent LiSiPh3. The fully phenylated species undergoes ligand redistribution in solution to give homoleptic ionic species. (Me3P)AuSiPh3 is less susceptible to this process and crystallizes from solutions as the heteroleptic complex. The crystal structure of this compound has been determined by X-ray diffraction. In the crystal lattice the molecules are not associated.


Author(s):  
Natalia V. Zubkova ◽  
Nikita V. Chukanov ◽  
Christof Schäfer ◽  
Konstantin V. Van ◽  
Igor V. Pekov ◽  
...  

Al analogue of chayesite (with Al > Fe3+) was found in a lamproite from Cancarix, SE Spain. The mineral forms green thick-tabular crystals up to 0.4 mm across in cavities. The empirical formula derived from EMP measurements and calculated on the basis of 17 Mg + Fe + Al + Si apfu is (K0.75 Na0.20 Ca0.11)Mg3.04 Fe0.99 Al1.18 Si11.80 O30. The crystal structure was determined from single crystal X-ray diffraction data ( R = 2.38%). The mineral is hexagonal, space group P 6/ mcc, a = 10.09199(12), c = 14.35079(19) Å, V = 1265.78(3) Å3, Z = 2. Fe is predominantly divalent. Al is mainly distributed between the octahedral A site and the tetrahedral T 2 site. The crystal chemical formula derived from the structure refinement is C (K0.73 Na0.16 Ca0.11)B (Na0.02)4 A(Mg0.42 Al0.29 Fe0.29)2 T 2(Mg0.71 Fe0.16 Al0.13)3 T 1(Si0.985 Al0.015)12 O30.


1990 ◽  
Vol 43 (10) ◽  
pp. 1697 ◽  
Author(s):  
GA Bowmaker ◽  
PC Healy ◽  
LM Engelhardt ◽  
JD Kildea ◽  
BW Skelton ◽  
...  

The crystal structures of [Cu(Pme3)4]X (X = Cl , Br, I) and of [M(PPh3)4] [PF6] (M = Cu, Ag) have been determined by single-crystal X-ray diffraction methods at 295 K. The former compounds contain nearly tetrahedral [Cu(PMe3)4]+ ions on sites of m symmetry with mean Cu-P bond lengths of 2.270, 2.271 and 2.278 Ǻ for X = Cl , Br and I respectively. The latter compounds contain [M(PPh3)4]+ ions on sites of 3 symmetry. In the M =Ag complex the coordination environment is close to tetrahedral, but in the M =Cu complex the length of the axial Cu-P bond [2.465(2)Ǻ] is significantly shorter than that of the off-axis bonds [2.566(2)Ǻ]. Possible reasons for this are discussed.


2015 ◽  
Vol 71 (11) ◽  
pp. 1325-1327 ◽  
Author(s):  
Maxim Bykov ◽  
Elena Bykova ◽  
Vadim Dyadkin ◽  
Dominik Baumann ◽  
Wolfgang Schnick ◽  
...  

Hitherto, phosphorus oxonitride (PON) could not be obtained in the form of single crystals and only powder diffraction experiments were feasible for structure studies. In the present work we have synthesized two polymorphs of phosphorus oxonitride, cristobalite-type (cri-PON) and coesite-type (coe-PON), in the form of single crystals and reinvestigated their crystal structures by means of in house and synchrotron single-crystal X-ray diffraction. The crystal structures ofcri-PON andcoe-PON are built from PO2N2tetrahedral units, each with a statistical distribution of oxygen and nitrogen atoms. The crystal structure of thecoe-PON phase has the space groupC2/cwith seven atomic sites in the asymmetric unit [two P and three (N,O) sites on general positions, one (N,O) site on an inversion centre and one (N,O) site on a twofold rotation axis], while thecri-PON phase possesses tetragonalI-42dsymmetry with two independent atoms in the asymmetric unit [the P atom on a fourfold inversion axis and the (N,O) site on a twofold rotation axis]. In comparison with previous structure determinations from powder data, all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles.


Author(s):  
Hidetomo Hongu ◽  
Akira Yoshiasa ◽  
Massimo Nespolo ◽  
Tsubasa Tobase ◽  
Makoto Tokuda ◽  
...  

Petzite, Ag3AuTe2, crystallizes in the space group I4132, which is a Sohncke type of space group where chiral crystal structures can occur. The structure refinement of petzite reported long ago [Frueh (1959). Am. Mineral. 44, 693–701] did not provide any information about the absolute structure. A new single-crystal X-ray diffraction refinement has now been performed on a sample from Lake View Mine, Golden Mile, Kalgoorlie, Australia, which has resulted in a reliable absolute structure [a Flack parameter of 0.05 (3)], although this corresponds to the opposite enantiomorph reported previously. The minimum Te–Te distance is 3.767 (3) Å, slightly shorter than the van der Waals bonding distance, which suggests a weak interaction between the two chalcogens. XANES spectra near the Au and Te L III edges suggest that the chemical-bonding character of Au in petzite is more metallic than in other gold minerals.


1984 ◽  
Vol 37 (5) ◽  
pp. 921 ◽  
Author(s):  
PC Healy ◽  
JM Patrick ◽  
AH White

The crystal structures of the title compounds, [Ni(OH2)4(en)] [SO4].2H2O, (1), and [Ni(OH2)4(bpy)]- [SO4].2H2O, (2), have been determined by single-crystal X-ray diffraction methods at 295 K, being refined by full matrix least-squares methods to residuals of 0.028,0.031 for 1852, 4323 independent 'observed' reflections respectively. Crystals of (1) are monoclinic, C2/c, a 9.459(4), b 12.192(7), c 12.294(3) �, β 119.84(4)�, Z 4. In the cation, Ni-N is 2.061(2) �; Ni-O (trans to O, N respectively) are 2.106(2), 2.063(2) �. Instead of being enlarged above 90� as predicted from repulsion theory, the angle between the pair of oxygen atoms trans to nitrogen is diminished, being 87 14(7)�. Crystals of (2) are triclinic, P1, a 11.476(5), b 9.351(5), c 7.793(4) �, α 77.63(4), β 83.52(3), γ87.40(4)�, Z 2. In the cation, Ni-N are both 2.063(2) �. Ni-O (trans to N, O respectively) are 2.060(2), 2.O42(2); 2.O80(2), 2�. The short Ni-O distance [2.042(2)�] is associated with the coordination of a trigonal water molecule.


Sign in / Sign up

Export Citation Format

Share Document