Taylor series‐based deep belief network for automatic classification of diabetic retinopathy using retinal fundus images

Author(s):  
Saurabh Shrikant Athalye ◽  
Gaurav Vijay
2021 ◽  
Author(s):  
Abdullah Biran

Automatic Detection and Classification of Diabetic Retinopathy from Retinal Fundus Images by Abdullah Biran, Master of Applied Science, lectrical and computer engineering Department, Ryerson University, 2017. Diabetic Retinopathy (DR) is an eye disease that leads to blindness when it progresses to proliferative level. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness. In this thesis, an automatic algorithm for detecting diabetic retinopathy is presented. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. In addition, Support Vector Machine (SVM) classifier is used to classify retinal images into normal or abnormal cases of DR including non-proliferative (NPDR) or proliferative diabetic retinopathy (PDR). The proposed method has been tested on fundus images from Standard Diabetic Retinopathy Database (DIARETDB). The implementation of the presented methodology was done in MATLAB. The methodology is tested for sensitivity and accuracy.


2010 ◽  
Author(s):  
Jiang Liu ◽  
Damon W. K. Wong ◽  
Ngan Meng Tan ◽  
Zhuo Zhang ◽  
Shijian Lu ◽  
...  

2020 ◽  
Author(s):  
Alejandro Noriega ◽  
Daniela Meizner ◽  
Dalia Camacho ◽  
Jennifer Enciso ◽  
Hugo Quiroz-Mercado ◽  
...  

BACKGROUND The automated screening of patients at risk of developing diabetic retinopathy (DR) represents an opportunity to improve their mid-term outcome, and lower the public expenditure associated with direct and indirect costs of common sight-threatening complications of diabetes. OBJECTIVE The present study, aims to develop and evaluate the performance of an automated deep learning–based system to classify retinal fundus images from international and Mexican patients, as referable and non-referable DR cases. In particular, the performance of the automated retina image analysis (ARIA) system is evaluated under an independent scheme (i.e. only ARIA screening) and two assistive schemes (i.e., hybrid ARIA + ophthalmologist screening), using a web-based platform for remote image analysis to determine and compare the sensibility and specificity of the three schemes. METHODS A randomized controlled experiment was performed where seventeen ophthalmologists were asked to classify a series of retinal fundus images under three different conditions: 1) screening the fundus image by themselves (solo), 2) screening the fundus image after being exposed to the retina image classification of the ARIA system (ARIA answer), and 3) screening the fundus image after being exposed to the classification of the ARIA system, as well as its level of confidence and an attention map highlighting the most important areas of interest in the image according to the ARIA system (ARIA explanation). The ophthalmologists’ classification in each condition and the result from the ARIA system were compared against a gold standard generated by consulting and aggregating the opinion of three retina specialists for each fundus image. RESULTS The ARIA system was able to classify referable vs. non-referable cases with an area under the Receiver Operating Characteristic curve (AUROC) of 98.0% and a sensitivity and specificity of 95.1% and 91.5% respectively, for international patient-cases; and an AUROC, sensitivity, and specificity of 98.3%, 95.2%, and 90.0% respectively for Mexican patient-cases. The results achieved outperformed the average performance of the seventeen ophthalmologists enrolled in the study. Additionally, the achieved results suggest that the ARIA system can be useful as an assistive tool, as significant sensitivity improvements were observed in the experimental condition where ophthalmologists were exposed to the ARIA’s system answer previous to their own classification (93.3%), compared to the sensitivity of the condition where participants assessed the images independently (87.3%). CONCLUSIONS These results demonstrate that both use cases of the ARIA system, independent and assistive, present a substantial opportunity for Latin American countries like Mexico, towards an efficient expansion of monitoring capacity for the early detection of diabetes-related blindness.


2021 ◽  
Author(s):  
Abdullah Biran

Automatic Detection and Classification of Diabetic Retinopathy from Retinal Fundus Images by Abdullah Biran, Master of Applied Science, lectrical and computer engineering Department, Ryerson University, 2017. Diabetic Retinopathy (DR) is an eye disease that leads to blindness when it progresses to proliferative level. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness. In this thesis, an automatic algorithm for detecting diabetic retinopathy is presented. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. In addition, Support Vector Machine (SVM) classifier is used to classify retinal images into normal or abnormal cases of DR including non-proliferative (NPDR) or proliferative diabetic retinopathy (PDR). The proposed method has been tested on fundus images from Standard Diabetic Retinopathy Database (DIARETDB). The implementation of the presented methodology was done in MATLAB. The methodology is tested for sensitivity and accuracy.


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3922
Author(s):  
Sheeba Lal ◽  
Saeed Ur Rehman ◽  
Jamal Hussain Shah ◽  
Talha Meraj ◽  
Hafiz Tayyab Rauf ◽  
...  

Due to the rapid growth in artificial intelligence (AI) and deep learning (DL) approaches, the security and robustness of the deployed algorithms need to be guaranteed. The security susceptibility of the DL algorithms to adversarial examples has been widely acknowledged. The artificially created examples will lead to different instances negatively identified by the DL models that are humanly considered benign. Practical application in actual physical scenarios with adversarial threats shows their features. Thus, adversarial attacks and defense, including machine learning and its reliability, have drawn growing interest and, in recent years, has been a hot topic of research. We introduce a framework that provides a defensive model against the adversarial speckle-noise attack, the adversarial training, and a feature fusion strategy, which preserves the classification with correct labelling. We evaluate and analyze the adversarial attacks and defenses on the retinal fundus images for the Diabetic Retinopathy recognition problem, which is considered a state-of-the-art endeavor. Results obtained on the retinal fundus images, which are prone to adversarial attacks, are 99% accurate and prove that the proposed defensive model is robust.


Sign in / Sign up

Export Citation Format

Share Document