Game Theory Based Real-Time Shop Floor Scheduling Strategy and Method for Cloud Manufacturing

2016 ◽  
Vol 32 (4) ◽  
pp. 437-463 ◽  
Author(s):  
Yingfeng Zhang ◽  
Jin Wang ◽  
Sichao Liu ◽  
Cheng Qian
Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4507 ◽  
Author(s):  
Wenchao Yang ◽  
Wenfeng Li ◽  
Yulian Cao ◽  
Yun Luo ◽  
Lijun He

In recent years, the individualized demand of customers brings small batches and diversification of orders towards enterprises. The application of enabling technologies in the factory, such as the industrial Internet of things (IIoT) and cloud manufacturing (CMfg), enhances the ability of customer requirement automatic elicitation and the manufacturing process control. The job shop scheduling problem with a random job arrival time dramatically increases the difficulty in process management. Thus, how to collaboratively schedule the production and logistics resources in the shop floor is very challenging, and it has a fundamental and practical significance of achieving the competitiveness for an enterprise. To address this issue, the real-time model of production and logistics resources is built firstly. Then, the task entropy model is built based on the task information. Finally, the real-time self-adaption collaboration of production and logistics resources is realized. The proposed algorithm is carried out based on a practical case to evaluate its effectiveness. Experimental results show that our proposed algorithm outperforms three existing algorithms.


Author(s):  
Wenchao Yang ◽  
Wenfeng Li ◽  
Yulian Cao ◽  
Yun Luo ◽  
Lijun He

In recent years, the individualized demand of customers brings small batches and diversification of orders towards enterprises. The application of enabling technologies in factory, such as the Industrial Internet of Things (IIoT) and Cloud Manufacturing (CMfg), enhances the ability of customer requirement automatic elicitation and the manufacturing process control. The job shop scheduling problem with random job arrival time dramatically increases the difficulty in process management. Thus, how to collaboratively schedule the production and logistics resources in the shop floor is very challenging, and it has a fundamental and practical significance of achieving the competitiveness for an enterprise. To address this issue, the real-time model of production and logistics resources is built firstly. Then, the task entropy model is built based on the task information. Finally, the real-time self-adaption collaboration of production and logistics resources is realized. The proposed algorithm is carried out based on a practical case to evaluate its effectiveness. Experimental results show that our proposed algorithm outperforms three existing algorithms.


2002 ◽  
Vol 79 (2) ◽  
pp. 113-120 ◽  
Author(s):  
J. Käschel ◽  
Tobias Teich ◽  
Bernd Zacher

Author(s):  
Shreyanshu Parhi ◽  
S. C. Srivastava

Optimized and efficient decision-making systems is the burning topic of research in modern manufacturing industry. The aforesaid statement is validated by the fact that the limitations of traditional decision-making system compresses the length and breadth of multi-objective decision-system application in FMS.  The bright area of FMS with more complexity in control and reduced simpler configuration plays a vital role in decision-making domain. The decision-making process consists of various activities such as collection of data from shop floor; appealing the decision-making activity; evaluation of alternatives and finally execution of best decisions. While studying and identifying a suitable decision-making approach the key critical factors such as decision automation levels, routing flexibility levels and control strategies are also considered. This paper investigates the cordial relation between the system ideality and process response time with various prospective of decision-making approaches responsible for shop-floor control of FMS. These cases are implemented to a real-time FMS problem and it is solved using ARENA simulation tool. ARENA is a simulation software that is used to calculate the industrial problems by creating a virtual shop floor environment. This proposed topology is being validated in real time solution of FMS problems with and without implementation of decision system in ARENA simulation tool. The real-time FMS problem is considered under the case of full routing flexibility. Finally, the comparative analysis of the results is done graphically and conclusion is drawn.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4836
Author(s):  
Liping Zhang ◽  
Yifan Hu ◽  
Qiuhua Tang ◽  
Jie Li ◽  
Zhixiong Li

In modern manufacturing industry, the methods supporting real-time decision-making are the urgent requirement to response the uncertainty and complexity in intelligent production process. In this paper, a novel closed-loop scheduling framework is proposed to achieve real-time decision making by calling the appropriate data-driven dispatching rules at each rescheduling point. This framework contains four parts: offline training, online decision-making, data base and rules base. In the offline training part, the potential and appropriate dispatching rules with managers’ expectations are explored successfully by an improved gene expression program (IGEP) from the historical production data, not just the available or predictable information of the shop floor. In the online decision-making part, the intelligent shop floor will implement the scheduling scheme which is scheduled by the appropriate dispatching rules from rules base and store the production data into the data base. This approach is evaluated in a scenario of the intelligent job shop with random jobs arrival. Numerical experiments demonstrate that the proposed method outperformed the existing well-known single and combination dispatching rules or the discovered dispatching rules via metaheuristic algorithm in term of makespan, total flow time and tardiness.


Sign in / Sign up

Export Citation Format

Share Document