scholarly journals Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nodD gene product

1987 ◽  
Vol 6 (4) ◽  
pp. 841-848 ◽  
Author(s):  
Beatrix Horvath ◽  
Christian W.B. Bachem ◽  
Jeff Schell ◽  
Adam Kondorosi
Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 913-925 ◽  
Author(s):  
T. Klein ◽  
A.M. Arias

The vestigial (vg) gene of Drosophila plays a central role in the development and patterning of the wing: loss of vestigial results in failures in wing development and ectopic expression of vestigial leads to the development of ectopic wings. The wing-specific regulation of vestigial is mediated through two enhancers: (1) the Boundary Enhancer (vgBE) is early acting and becomes restricted to the wing margin, and (2) the Quadrant Enhancer (vgQE), acts later and is responsible for the expression of vestigial in the developing wing blade. These enhancers receive regulatory inputs from three signalling pathways: wingless, decapentaplegic and Notch/Suppressor of Hairless. Our experiments show that the vestigial gene product is also an input in the regulation of vestigial expression. In particular, Vestigial provides an important input for the regulation of the activity of the vgQE acting in concert with Wingless and Decapentaplegic. Our results suggest how interactions between vgBE and the vgQE mediated by Vestigial can explain the interactions between the wing margin and the wing blade during the growth of the wing. We further show that Vestigial and Notch collaborate with Wingless to subdivide and pattern the wing blade. These results lead us to propose a general role for Wingless during development in which it stabilizes cell fate decisions that have been implemented by other molecules.


2009 ◽  
Vol 40 (01) ◽  
Author(s):  
J Schessl ◽  
Y Zou ◽  
MJ McGrath ◽  
BS Cowling ◽  
B Maiti ◽  
...  

1994 ◽  
Vol 72 (01) ◽  
pp. 065-069 ◽  
Author(s):  
J M Soria ◽  
D Brito ◽  
J Barceló ◽  
J Fontcuberta ◽  
L Botero ◽  
...  

SummarySingle strand conformation polymorphism (SSCP) analysis of exon 7 of the protein C gene has identified a novel splice site missense mutation (184, Q → H), in a newborn child with purpura fulminans and undetectable protein C levels. The mutation, seen in the homozygous state in the child and in the heterozygous state in her mother, was characterized and found to be a G to C nucleotide substitution at the -1 position of the donor splice site of intron 7 of the protein C gene, which changes histidine 184 for glutamine (184, Q → H). According to analysis of the normal and mutated sequences, this mutation should also abolish the function of the donor splice site of intron 7 of the protein C gene. Since such a mutation is compatible with the absence of gene product in plasma and since DNA sequencing of all protein C gene exons in this patient did not reveal any other mutation, we postulate that mutation 184, Q → H results in the absence of protein C gene product in plasma, which could be the cause of the severe phenotype observed in this patient.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 354-362 ◽  
Author(s):  
K. Matsuda ◽  
E. Araki ◽  
R. Yoshimura ◽  
K. Tsuruzoe ◽  
N. Furukawa ◽  
...  

Tsitologiya ◽  
2018 ◽  
Vol 60 (7) ◽  
pp. 555-557 ◽  
Author(s):  
E. A. Alekseeva ◽  
◽  
T. A. Evstyukhina ◽  
V. T. Peshekhonov ◽  
V. G. Korolev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document