scholarly journals Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells.

1989 ◽  
Vol 8 (1) ◽  
pp. 65-72 ◽  
Author(s):  
K. Mann ◽  
R. Deutzmann ◽  
M. Aumailley ◽  
R. Timpl ◽  
L. Raimondi ◽  
...  
FEBS Letters ◽  
1988 ◽  
Vol 236 (2) ◽  
pp. 352-356 ◽  
Author(s):  
Brigitte Lankat-Buttgereit ◽  
Karlheinz Mann ◽  
Rainer Deutzmann ◽  
Rupert Timpl ◽  
Thomas Krieg

1992 ◽  
Vol 12 (2) ◽  
pp. 598-608
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


2020 ◽  
Vol 117 (27) ◽  
pp. 15827-15836
Author(s):  
Cuiwen He ◽  
Wenxin Song ◽  
Thomas A. Weston ◽  
Caitlyn Tran ◽  
Ira Kurtz ◽  
...  

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br,81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.


Sign in / Sign up

Export Citation Format

Share Document