scholarly journals Cloning and complete amino acid sequences of human and murine basement membrane protein BM-40 (SPARC, osteonectin)

FEBS Letters ◽  
1988 ◽  
Vol 236 (2) ◽  
pp. 352-356 ◽  
Author(s):  
Brigitte Lankat-Buttgereit ◽  
Karlheinz Mann ◽  
Rainer Deutzmann ◽  
Rupert Timpl ◽  
Thomas Krieg
2000 ◽  
Vol 68 (10) ◽  
pp. 5679-5689 ◽  
Author(s):  
Qijing Zhang ◽  
Jerrel C. Meitzler ◽  
Shouxiong Huang ◽  
Teresa Morishita

ABSTRACT The major outer membrane protein (MOMP), a putative porin and a multifunction surface protein of Campylobacter jejuni, may play an important role in the adaptation of the organism to various host environments. To begin to dissect the biological functions and antigenic features of this protein, the gene (designatedcmp) encoding MOMP was identified and characterized from 22 strains of C. jejuni and one strain of C. coli. It was shown that the single-copy cmp locus encoded a protein with characteristics of bacterial outer membrane proteins. Prediction from deduced amino acid sequences suggested that each MOMP subunit consisted of 18 β-strands connected by short periplasmic turns and long irregular external loops. Alignment of the amino acid sequences of MOMP from different strains indicated that there were seven localized variable regions dispersed among highly conserved sequences. The variable regions were located in the putative external loop structures, while the predicted β-strands were formed by conserved sequences. The sequence homology of cmp appeared to reflect the phylogenetic proximity of C. jejuni strains, since strains with identical cmp sequences had indistinguishable or closely related macrorestriction fragment patterns. Using recombinant MOMP and antibodies recognizing linear or conformational epitopes of the protein, it was demonstrated that the surface-exposed epitopes of MOMP were predominantly conformational in nature. These findings are instrumental in the design of MOMP-based diagnostic tools and vaccines.


1996 ◽  
Vol 270 (6) ◽  
pp. C1743-C1750 ◽  
Author(s):  
G. W. Laurie ◽  
J. D. Glass ◽  
R. A. Ogle ◽  
C. M. Stone ◽  
J. R. Sluss ◽  
...  

Regulated secretion requires the developmental coupling of neuronal or hormonal stimuli to an exocytotic response, a multistep pathway whose appearance may be linked with cellular adhesion to the newly formed exocrine cell basement membrane. We screened for adhesion-associated coupling activity using lacrimal acinar cells and have identified “BM180”, a novel basement membrane protein enriched in guanidine HCl extracts of lacrimal and parotid exocrine secretory glands. BM180 resides primarily in a previously inexamined lower molecular-mass basement membrane peak (peak 2) that contains cell adhesion activity inhibitable with the anti-BM180 monoclonal antibody 3E12. Removal of peak 2 by gel filtration or preincubation of basement membrane with 3E12 decreased regulated peroxidase secretion by one-half without affecting constitutive secretion or the amount of cellular peroxidase available for release. Adding back peak 2 restored regulated secretion in a dose-dependent and 3E12-inhibitable manner and suggested a synergistic relationship between BM180 and laminin 1. BM180 has a mobility of 180 and 60 kDa in the absence or presence of dithiothreitol, respectively, and shows no immunological identity by competitive enzyme-linked immunosorbent assay with laminin 1, collagen IV, entactin, fibronectin, BM-40, perlecan, or vitronectin. We propose that BM180 is an important resident of certain glandular basement membranes where it interacts with the cell surface, thereby possibly signaling the appearance of a transducing element in the stimulus-secretion coupling pathway.


Sign in / Sign up

Export Citation Format

Share Document