The sex determination gene doublesex regulates expression and secretion of the basement membrane protein Collagen IV

Author(s):  
Qionglin Peng ◽  
Jiangtao Chen ◽  
Rong Wang ◽  
Huan Zhu ◽  
Caihong Han ◽  
...  
2020 ◽  
Vol 117 (27) ◽  
pp. 15827-15836
Author(s):  
Cuiwen He ◽  
Wenxin Song ◽  
Thomas A. Weston ◽  
Caitlyn Tran ◽  
Ira Kurtz ◽  
...  

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br,81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.


1996 ◽  
Vol 270 (6) ◽  
pp. C1743-C1750 ◽  
Author(s):  
G. W. Laurie ◽  
J. D. Glass ◽  
R. A. Ogle ◽  
C. M. Stone ◽  
J. R. Sluss ◽  
...  

Regulated secretion requires the developmental coupling of neuronal or hormonal stimuli to an exocytotic response, a multistep pathway whose appearance may be linked with cellular adhesion to the newly formed exocrine cell basement membrane. We screened for adhesion-associated coupling activity using lacrimal acinar cells and have identified “BM180”, a novel basement membrane protein enriched in guanidine HCl extracts of lacrimal and parotid exocrine secretory glands. BM180 resides primarily in a previously inexamined lower molecular-mass basement membrane peak (peak 2) that contains cell adhesion activity inhibitable with the anti-BM180 monoclonal antibody 3E12. Removal of peak 2 by gel filtration or preincubation of basement membrane with 3E12 decreased regulated peroxidase secretion by one-half without affecting constitutive secretion or the amount of cellular peroxidase available for release. Adding back peak 2 restored regulated secretion in a dose-dependent and 3E12-inhibitable manner and suggested a synergistic relationship between BM180 and laminin 1. BM180 has a mobility of 180 and 60 kDa in the absence or presence of dithiothreitol, respectively, and shows no immunological identity by competitive enzyme-linked immunosorbent assay with laminin 1, collagen IV, entactin, fibronectin, BM-40, perlecan, or vitronectin. We propose that BM180 is an important resident of certain glandular basement membranes where it interacts with the cell surface, thereby possibly signaling the appearance of a transducing element in the stimulus-secretion coupling pathway.


Sign in / Sign up

Export Citation Format

Share Document