scholarly journals Latent Marek's disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells.

1993 ◽  
Vol 12 (8) ◽  
pp. 3277-3286 ◽  
Author(s):  
H.J. Delecluse ◽  
S. Schüller ◽  
W. Hammerschmidt
2019 ◽  
Vol 20 (9) ◽  
pp. 2089 ◽  
Author(s):  
Xiaolu Zhou ◽  
Shanli Wu ◽  
Hongda Zhou ◽  
Mengyun Wang ◽  
Menghan Wang ◽  
...  

Ubiquitination and deubiquitination of cellular proteins are reciprocal reactions catalyzed by ubiquitination-related enzymes and deubiquitinase (DUB) which regulate almost all cellular processes. Marek’s disease virus (MDV) encodes a viral DUB that plays an important role in the MDV pathogenicity. Chicken CD4+ T-cell lymphoma induced by MDV is a key contributor to multiple visceral tumors and immunosuppression of chickens with Marek’s disease (MD). However, alterations in the ubiquitylome of MDV-induced T lymphoma cells are still unclear. In this study, a specific antibody against K-ε-GG was used to isolate ubiquitinated peptides from CD4+ T cells and MD T lymphoma cells. Mass spectrometry was used to compare and analyze alterations in the ubiquitylome. Our results showed that the ubiquitination of 717 and 778 proteins was significantly up- and downregulated, respectively, in T lymphoma cells. MDV up- and downregulated ubiquitination of a similar percentage of proteins. The ubiquitination of transferases, especially serine/threonine kinases, was the main regulatory target of MDV. Compared with CD4+ T cells of the control group, MDV mainly altered the ubiquitylome associated with the signal transduction, immune system, cancer, and infectious disease pathways in T lymphoma cells. In these pathways, the ubiquitination of CDK1, IL-18, PRKCB, ETV6, and EST1 proteins was significantly up- or downregulated as shown by immunoblotting. The current study revealed that the MDV infection could exert a significant influence on the ubiquitylome of CD4+ T cells.


2019 ◽  
Vol 20 (2) ◽  
pp. 6-11
Author(s):  
Aly El-Kenawy ◽  
Mohamed El-Tholoth ◽  
Emad A

In the present study, a total of 16 samples including feather follicle epithelium, ovary, spleen and kidney (4 samples for each organ) were collected from diseased chicken flocks suspected to be infected with Marek’s disease virus (MDV) at Dakahlia Governorate, Egypt during the period from October 2016 to October 2017. Each sample was pooled randomly from three to five birds (90 to 360 days old). The isolation of the suspected virus from the collected samples was carried out via chorioallantoic membranes (CAMs) of 12 days old embryonated chicken eggs (ECEs). Three egg passages were carried out for each sample. Hyperimmune serum was prepared against standard MDV. MDV in both field and egg passaged samples (after 3rd passage) was identified by agar gel precipitation test (AGPT) and indirect fluorescence antibody test (IFAT). Molecular identification of virus was carried out by conventional polymerase chain reaction (PCR) and real- time PCR in four selected samples. The results revealed that 14 samples (87.5%) including 4 (100%) samples from feather follicle epithelium, ovary and kidney and 2 (50%) samples from spleen, showed positive results in virus isolation after 3rd passage. The positive results percentage by AGPT for field samples were 50% (8 out of 16 samples), while after the 3rd passage in ECEs were 37.5% (6 out of 16 samples) and the positive results percentage by IFAT for field samples were 62.5% (10 out of 16 samples), while after the 3rd passage in ECEs were 81.25 % (13 out of 16 samples). Viral nucleic acid was detected in all selected samples by conventional and real- time PCR. The results indicate that feather follicle epithelium is the best organ for MDV detection. IFAT is superior over AGPT in virus detection. Conventional and real - time PCR could be efficiently used for molecular detection of the virus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aijun Sun ◽  
Rui Wang ◽  
Shuaikang Yang ◽  
Xiaojing Zhu ◽  
Ying Liu ◽  
...  

AbstractMarek’s disease virus (MDV) induces severe immunosuppression and lymphomagenesis in the chicken, its natural host, and results in a condition that investigated the pathogenesis of MDV and have begun to focus on the expression profiling of circular RNAs (circRNAs). However, little is known about how the expression of circRNAs is referred to as Marek’s disease. Previous reports have is regulated during MDV replication. Here, we carried out a comprehensive profiling analysis of N6-methyladenosine (m6A) modification on the circRNA transcriptome in infected and uninfected chicken embryonic fibroblast (CEF) cells. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed that m6A modification was highly conserved in circRNAs. Comparing to the uninfected group, the number of peaks and conserved motifs were not significantly different in cells that were infected with MDV, although reduced abundance of circRNA m6A modifications. However, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses revealed that the insulin signaling pathway was associated with the regulation of m6A modified circRNAs in MDV infection. This is the first report to describe alterations in the transcriptome-wide profiling of m6A modified circRNAs in MDV-infected CEF cells.


Sign in / Sign up

Export Citation Format

Share Document