FINE-STRUCTURAL STUDY ON THE FORMATION OF THE GENERATIVE CELL WALL AND INTINE-3 LAYER IN A GROWING POLLEN GRAIN OF LILIUM LONGIFLORUM

1985 ◽  
Vol 72 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Sumio Nakamura ◽  
Hisako Miki-Hirosige
1972 ◽  
Vol 11 (1) ◽  
pp. 111-129
Author(s):  
P. ECHLIN

The final stages of Helleborus pollen-grain ontogeny, which culminate in maturation and germination of the grain, have been investigated at the ultrastructural level. Following the deposition of primary and secondary exine, and during the early stages of intine formation, the microspore passes through a vacuolate phase, in which the cytoplasm appears devoid of most organelles other than the prominent nucleus. The formation of the vacuole results in the displacement of the nucleus to one side of the pollen grain. The vacuole quickly disappears and a number of organelles reappear in the cytoplasm, in particular the dictyosomes and strands of endoplasmic reticulum, with associated grey bodies. Following mitotic division of the pollen grain, the first signs of the generative cell wall appear as a pair of tightly appressed unit membranes in the narrow strand of cytoplasm separating the two newly formed generative and vegetative nuclei. As development proceeds, the space between the two membranes gradually fills with an electron-transparent material similar to the substance found in the numerous dictyosome-derived vesicles which, together with the endoplasmic reticulum, are both closely associated with the developing cell wall. The generative cell wall fuses with the cellulosic intine, which has gradually increased in amount during these stages, and the cell division is complete. The smaller generative cell contains a prominent nucleus and a small amount of cytoplasm devoid of plastids and most other organelles. The larger vegetative cell also contains a prominent nucleus and a large amount of cytoplasm containing amyloplasts, mitochondria, dictyosomes and endoplasmic reticulum, and abundant ribosomes, many of which are in a polysome configuration. The final stages in development are characterized by a progressive decrease in the amount of starch in the vegetative cell and an increase in the size of grey bodies, many of which are invested in multilayered shrouds of endoplasmic reticulum. The generative cell wall disappears and a multivesicular/granular body gradually appears at the periphery of the pollen grain. The granular-vesicular material, which is formed from the dictyosomes and/or the degenerating plastids, is thought to represent metabolic reserves necessary for pollen-tube formation. One or more pollen tubes emerge from the apertural sectors of the pollen grain, and maturation of the grain is complete.


1968 ◽  
Vol 3 (4) ◽  
pp. 573-578
Author(s):  
R. E. ANGOLD

The generative cell wall in the pollen grain of Endymion non-scriptus is formed, as in somatic cells, from a cell plate between the vegetative and generative nuclei. This wall curves around the generative nucleus, and fuses with the intine to enclose the generative cell. The generative cell is subsequently freed from the intine by the constriction of the generative cell wall between the generative nucleus and the intine.


Plant Science ◽  
1990 ◽  
Vol 72 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Kenji Ueda ◽  
Yoshihisa Miyamoto ◽  
Ichiro Tanaka

2007 ◽  
Vol 97 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Khalid Amari ◽  
Lorenzo Burgos ◽  
Vicente Pallas ◽  
María Amelia Sanchez-Pina

The route of infection and the pattern of distribution of Prunus necrotic ringspot virus (PNRSV) in apricot pollen were studied. PNRSV was detected both within and on the surface of infected pollen grains. The virus invaded pollen during its early developmental stages, being detected in pollen mother cells. It was distributed uniformly within the cytoplasm of uni- and bicellular pollen grains and infected the generative cell. In mature pollen grains, characterized by their triangular shape, the virus was located mainly at the apertures, suggesting that PNRSV distribution follows the same pattern as the cellular components required for pollen tube germination and cell wall tube synthesis. PNRSV also was localized inside pollen tubes, especially in the growth zone. In vitro experiments demonstrated that infection with PNRSV decreases the germination percentage of pollen grains by more than half and delays the growth of pollen tubes by ≈24 h. However, although PNRSV infection affected apricot pollen grain performance during germination, the presence of the virus did not completely prevent fertilization, because the infected apricot pollen tubes, once germinated, were able to reach the apricot embryo sacs, which, in the climatic conditions of southeastern Spain, mature later than in other climates. Thus, infected pollen still could play an important role in the vertical transmission of PNRSV in apricot.


2014 ◽  
Vol 50 (3) ◽  
pp. 367-380 ◽  
Author(s):  
Elżbieta Bednarska

DNA and histone synthesis in five consecutive morphological stages of <em>Hyacinthus orientalis</em> L. pollen grain differentiation were studied autoradiographically. DNA synthesis was found to occur in both the generative and the vegetative cell. DNA replication in the generative cell took place when the generative cell was still adhered to the pollen grain wall but already devoid of callose wall. DNA synthesis in the generative cell slightly preceded that in the vegetative cell. Histones were synthesized in phase S of the generative and vegetative cell. In the generative cell histone synthesis also continued at a lower level after completion of DNA replication. In the developmental stages under study the nuclei of the generative cells were decidedly richer in lysine histones than vegetative cell nuclei.


2014 ◽  
Vol 57 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Elżbieta Bednarska

The sequence of ultrastructural changes in the cytoplasm during the successive stages of pollen grain development in <em>Hyacinthus orientulis</em> pollen cells was studied. The cytoplasmic transformations of the generative cell included the elimination of plastids, increase in the number of mitochondria, assumption of a spindle shape with the aid of microtubules and the characteristic development of the vacuole system with the formation of so-called colored bodies. The cytoplasmic transformations of the generative cell encompassed changes in the plastids, which began to accumulate starch soon after the cell was formed, then released it shortly before anthesis, an increase in the number of mitochondria and an increase in the number of highly active dictyosomes just before anthesis. Changes in the structure of the border region between the differentiating pollen cells were associated mainly with the periodical appearance of a callose wall and the presence of lysosome-like bodies in the cytoplasm of the vegetative cell surrounding the generative cell. They arose soon after the disappearance of the callose wall and disappeared shortly before anthesis.


Sign in / Sign up

Export Citation Format

Share Document