scholarly journals Autoradiographic studies of DNA and histone synthesis in successive differentiation stages of pollen grain in Hyacinthus orientalis L.

2014 ◽  
Vol 50 (3) ◽  
pp. 367-380 ◽  
Author(s):  
Elżbieta Bednarska

DNA and histone synthesis in five consecutive morphological stages of <em>Hyacinthus orientalis</em> L. pollen grain differentiation were studied autoradiographically. DNA synthesis was found to occur in both the generative and the vegetative cell. DNA replication in the generative cell took place when the generative cell was still adhered to the pollen grain wall but already devoid of callose wall. DNA synthesis in the generative cell slightly preceded that in the vegetative cell. Histones were synthesized in phase S of the generative and vegetative cell. In the generative cell histone synthesis also continued at a lower level after completion of DNA replication. In the developmental stages under study the nuclei of the generative cells were decidedly richer in lysine histones than vegetative cell nuclei.

2014 ◽  
Vol 57 (2) ◽  
pp. 235-245 ◽  
Author(s):  
Elżbieta Bednarska

The sequence of ultrastructural changes in the cytoplasm during the successive stages of pollen grain development in <em>Hyacinthus orientulis</em> pollen cells was studied. The cytoplasmic transformations of the generative cell included the elimination of plastids, increase in the number of mitochondria, assumption of a spindle shape with the aid of microtubules and the characteristic development of the vacuole system with the formation of so-called colored bodies. The cytoplasmic transformations of the generative cell encompassed changes in the plastids, which began to accumulate starch soon after the cell was formed, then released it shortly before anthesis, an increase in the number of mitochondria and an increase in the number of highly active dictyosomes just before anthesis. Changes in the structure of the border region between the differentiating pollen cells were associated mainly with the periodical appearance of a callose wall and the presence of lysosome-like bodies in the cytoplasm of the vegetative cell surrounding the generative cell. They arose soon after the disappearance of the callose wall and disappeared shortly before anthesis.


2014 ◽  
Vol 53 (2) ◽  
pp. 145-158 ◽  
Author(s):  
Elżbieta Bednarska

RNA and protein synthesis were investigated in generative and vegetative cells during maturation of pollen grains. The rate of RNA and protein synthesis was analysed in reference to the successive interphase periods of the life cycle of pollen cells as well as against the background of the growth dynamics of the cell volume. The results of studies demonstrated that the pollen grain increases in size owing to the growth of the vegetative cell. The generative one does not grow. RNA synthesis and that of proteins in differentiating pollen cells has a different course. In the growing vegetative cell it lasts longer and is more intensive than in the generative cell which does not grow. RNA and protein synthesis in the vegetative cell take place in the period from the callose stage to the stage of lemon-shaped generative cell, that is in the period of phases G<sub>1</sub>, S and G<sub>2</sub>. This synthesis is positively correlated with the growth of the pollen grain. RNA and protein synthesis in the generative cell comprises the period from the callose-less lenticular stage to the stage of spherical generative cell, that is the phases S and early phase G<sub>2</sub>. These results suggest that in the vegetative cell RNA and protein synthesis is utilised above all to increase of its cell, instead in non growing generative cell protein synthese is probably limited mostly to a histones and enzymatic proteins serving for the DNA replication process.


1977 ◽  
Vol 73 (2) ◽  
pp. 521-526 ◽  
Author(s):  
V Raghavan

Continued DNA synthesis in the generative cell nucleus, followed by mitosis and cytokinesis, results in the formation of pollen embryoids in cultured anthers of H. niger. In contrast, the nucleus of the vegetative cell undergoes no DNA synthesis after it is cut off, or synthesizes DNA only during a limited number of cell cycles. DNA synthetic patterns in the generative and vegetative cell nuclei confirm the ontogeny of embryoids described in this plant.


2007 ◽  
Vol 97 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Khalid Amari ◽  
Lorenzo Burgos ◽  
Vicente Pallas ◽  
María Amelia Sanchez-Pina

The route of infection and the pattern of distribution of Prunus necrotic ringspot virus (PNRSV) in apricot pollen were studied. PNRSV was detected both within and on the surface of infected pollen grains. The virus invaded pollen during its early developmental stages, being detected in pollen mother cells. It was distributed uniformly within the cytoplasm of uni- and bicellular pollen grains and infected the generative cell. In mature pollen grains, characterized by their triangular shape, the virus was located mainly at the apertures, suggesting that PNRSV distribution follows the same pattern as the cellular components required for pollen tube germination and cell wall tube synthesis. PNRSV also was localized inside pollen tubes, especially in the growth zone. In vitro experiments demonstrated that infection with PNRSV decreases the germination percentage of pollen grains by more than half and delays the growth of pollen tubes by ≈24 h. However, although PNRSV infection affected apricot pollen grain performance during germination, the presence of the virus did not completely prevent fertilization, because the infected apricot pollen tubes, once germinated, were able to reach the apricot embryo sacs, which, in the climatic conditions of southeastern Spain, mature later than in other climates. Thus, infected pollen still could play an important role in the vertical transmission of PNRSV in apricot.


1963 ◽  
Vol 18 (12) ◽  
pp. 1092-1097 ◽  
Author(s):  
Lothar Diers

According to the intense activity of the vegetative cell in the germinating pollen grain, the cytoplasm shows a highly organized structure. Concerning the structure the vegetative cell differs strongly from the generative cell. In the vegetative cell the big nucleus shows a very lobed shape. Large invaginations of the cytoplasm into the nucleus can be frequently observed. Series of adjacent sections show that deep and flat vesicles which may often broaden to unusual large cisternae, extend through the vegetative plasm and form by interconnections a highly developed endoplasmic reticulum which is continuous with the nuclear envelope. The leucoplasts contain large starch grains and very few lamellae, in many sections only one lamella is visible. Sometimes, a process of a leucoplast deeply reaches into another leucoplast. In some leucoplasts and mitochondria there are concentric stripes which, according to serial sections, are the margins of invaginations of the cytoplasm or of another organell. In the numerous mitochondria the inner folds have the form of cristae, tubules are not so frequently seen. The edges of the flattened sacs of the Golgi - apparatus expand to vacuoles which seem to separate from the flattened cisternae. Typical for the vegetative plasm are numerous small vacuoles. Relatively large, ringshaped or uniform dark bodies are assumed to be lipid inclusions.


1972 ◽  
Vol 11 (1) ◽  
pp. 111-129
Author(s):  
P. ECHLIN

The final stages of Helleborus pollen-grain ontogeny, which culminate in maturation and germination of the grain, have been investigated at the ultrastructural level. Following the deposition of primary and secondary exine, and during the early stages of intine formation, the microspore passes through a vacuolate phase, in which the cytoplasm appears devoid of most organelles other than the prominent nucleus. The formation of the vacuole results in the displacement of the nucleus to one side of the pollen grain. The vacuole quickly disappears and a number of organelles reappear in the cytoplasm, in particular the dictyosomes and strands of endoplasmic reticulum, with associated grey bodies. Following mitotic division of the pollen grain, the first signs of the generative cell wall appear as a pair of tightly appressed unit membranes in the narrow strand of cytoplasm separating the two newly formed generative and vegetative nuclei. As development proceeds, the space between the two membranes gradually fills with an electron-transparent material similar to the substance found in the numerous dictyosome-derived vesicles which, together with the endoplasmic reticulum, are both closely associated with the developing cell wall. The generative cell wall fuses with the cellulosic intine, which has gradually increased in amount during these stages, and the cell division is complete. The smaller generative cell contains a prominent nucleus and a small amount of cytoplasm devoid of plastids and most other organelles. The larger vegetative cell also contains a prominent nucleus and a large amount of cytoplasm containing amyloplasts, mitochondria, dictyosomes and endoplasmic reticulum, and abundant ribosomes, many of which are in a polysome configuration. The final stages in development are characterized by a progressive decrease in the amount of starch in the vegetative cell and an increase in the size of grey bodies, many of which are invested in multilayered shrouds of endoplasmic reticulum. The generative cell wall disappears and a multivesicular/granular body gradually appears at the periphery of the pollen grain. The granular-vesicular material, which is formed from the dictyosomes and/or the degenerating plastids, is thought to represent metabolic reserves necessary for pollen-tube formation. One or more pollen tubes emerge from the apertural sectors of the pollen grain, and maturation of the grain is complete.


2000 ◽  
Vol 346 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Manuel SOTO ◽  
Luis QUIJADA ◽  
Carlos ALONSO ◽  
Jose M. REQUENA

We have analysed the regulation of histone synthesis in Leishmania infantum following inhibition of DNA replication. Run-on experiments indicated that transcription rates of the genes coding for the four core histones (H2A, H2B, H3 and H4) were not affected by the inhibition with hydroxyurea of DNA synthesis. However, a dramatic decrease was observed in the newly synthesized histones after inhibition of DNA synthesis. Furthermore, the synthesis of both the histones and DNA resumed in promastigotes after removal of hydroxyurea, indicating that inhibition was reversible. Unlike most eukaryotes, in which the replication-dependent histone transcripts decrease upon a replication blockade, the levels of L. infantum histone mRNAs do not change under similar conditions. Thus the present data indicate that histone synthesis in Leishmania is tightly coupled to DNA replication by a mechanism operating at the translational level.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen You ◽  
YuPing Zhang ◽  
ShaoYu Yang ◽  
Xu Wang ◽  
Wen Yao ◽  
...  

In plants, the cell fates of a vegetative cell (VC) and generative cell (GC) are determined after the asymmetric division of the haploid microspore. The VC exits the cell cycle and grows a pollen tube, while the GC undergoes further mitosis to produce two sperm cells for double fertilization. However, our understanding of the mechanisms underlying their fate differentiation remains limited. One major advantage of the nuclear proteome analysis is that it is the only method currently able to uncover the systemic differences between VC and GC due to GC being engulfed within the cytoplasm of VC, limiting the use of transcriptome. Here, we obtained pure preparations of the vegetative cell nuclei (VNs) and generative cell nuclei (GNs) from germinating lily pollens. Utilizing these high-purity VNs and GNs, we compared the differential nucleoproteins between them using state-of-the-art quantitative proteomic techniques. We identified 720 different amount proteins (DAPs) and grouped the results in 11 fate differentiation categories. Among them, we identified 29 transcription factors (TFs) and 10 cell fate determinants. Significant differences were found in the molecular activities of vegetative and reproductive nuclei. The TFs in VN mainly participate in pollen tube development. In comparison, the TFs in GN are mainly involved in cell differentiation and male gametogenesis. The identified novel TFs may play an important role in cell fate differentiation. Our data also indicate differences in nuclear pore complexes and epigenetic modifications: more nucleoporins synthesized in VN; more histone variants and chaperones; and structural maintenance of chromosome (SMC) proteins, chromatin remodelers, and DNA methylation-related proteins expressed in GN. The VC has active macromolecular metabolism and mRNA processing, while GC has active nucleic acid metabolism and translation. Moreover, the members of unfolded protein response (UPR) and programmed cell death accumulate in VN, and DNA damage repair is active in GN. Differences in the stress response of DAPs in VN vs. GN were also found. This study provides a further understanding of pollen cell differentiation mechanisms and also a sound basis for future studies of the molecular mechanisms behind cell fate differentiation.


1968 ◽  
Vol 38 (3) ◽  
pp. 509-514 ◽  
Author(s):  
S. T. Takats

Tradescantia pollen grains, isolated during the period of DNA synthesis in the generative cell, accumulate deoxythymidine triphosphate (dTTP)-3H after incubation with thymidine-3H in the presence of millimolar deoxyadenosine. Most of this dTTP-3H was found to resist extraction by the fixative, cold ethanol-acetic acid, and its location was investigated by radioautography with thin, dry emulsion. Substantial binding of dTTP-3H occurred as an artifact; but when nuclei were isolated from the fixed pollen grains by sonication, it was found that they were differentially labeled: generative nuclei contained dTTP-3H, vegetative nuclei did not. This observation is discussed and is interpreted as evidence supporting the idea that thymidine is phosphorylated only in the generative cell of the pollen grain.


Parasitology ◽  
1977 ◽  
Vol 74 (2) ◽  
pp. 199-203 ◽  
Author(s):  
J. pasternak ◽  
M. A. Fernando ◽  
P. H. G. Stockdale ◽  
D. Weber

The response of intestinal host-cell nuclei of calves infected with Eimeria zuernii 6 and 8 days post-infection was examined using Feulgen-DNA microspectrophotometry. The results show that nuclear hypertrophy is dissociated from DNA replication. In the light of previous work (Fernando, Pasternak, Barrell & Stockdale, 1974) it is surmised that the specificity of infection of cells by E. zuernii is not stringent, with the major target being non-proliferative cells. At most, 20% of the first-generation schizonts develop within cells that would have had proliferative potential and as a result some non-scheduled DNA synthesis occurs.


Sign in / Sign up

Export Citation Format

Share Document