Clonal reproduction and patterns of genotypic diversity inDecodon verticillatus(Lythraceae)

1993 ◽  
Vol 80 (10) ◽  
pp. 1175-1182 ◽  
Author(s):  
Christopher G. Eckert ◽  
Spencer C. H. Barrett
Weed Science ◽  
1995 ◽  
Vol 43 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Cheryl A. Wilen ◽  
Jodie S. Holt ◽  
Norman C. Ellstrand ◽  
Ruth G. Shaw

Using starch gel electrophoresis, we examined the genetic variability of kikuyugrass collected from three golf course sites within its geographical range in California. These experiments were conducted to determine the method of spread of kikuyugrass in areas where it is considered invasive. Samples from roughs and fairways of each of these locations were compared. of the 354 plants examined, 12 different genotypes were identified by isozyme analysis, and only three of the nine putative loci varied among the genotypes. Two genotypes, representing 73% of the plants examined, were found at all three geographic locations. Our results imply that under common golf course practices, kikuyugrass is maintained by clonal reproduction. We conclude that low genetic variation does not preclude a plant species from being an aggressive invader.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1635-1644 ◽  
Author(s):  
François Balloux ◽  
Laurent Lehmann ◽  
Thierry de Meeûs

Abstract The consequences of variable rates of clonal reproduction on the population genetics of neutral markers are explored in diploid organisms within a subdivided population (island model). We use both analytical and stochastic simulation approaches. High rates of clonal reproduction will positively affect heterozygosity. As a consequence, nearly twice as many alleles per locus can be maintained and population differentiation estimated as FST value is strongly decreased in purely clonal populations as compared to purely sexual ones. With increasing clonal reproduction, effective population size first slowly increases and then points toward extreme values when the reproductive system tends toward strict clonality. This reflects the fact that polymorphism is protected within individuals due to fixed heterozygosity. Contrarily, genotypic diversity smoothly decreases with increasing rates of clonal reproduction. Asexual populations thus maintain higher genetic diversity at each single locus but a lower number of different genotypes. Mixed clonal/sexual reproduction is nearly indistinguishable from strict sexual reproduction as long as the proportion of clonal reproduction is not strongly predominant for all quantities investigated, except for genotypic diversities (both at individual loci and over multiple loci).


2020 ◽  
Vol 52 (5) ◽  
Author(s):  
Yinhua Wang ◽  
Lina Xie ◽  
Guogang Zhang ◽  
Hongyu Guo ◽  
Ashley A Whitt ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 3856
Author(s):  
Sandra Rychel-Bielska ◽  
Anna Surma ◽  
Wojciech Bielski ◽  
Bartosz Kozak ◽  
Renata Galek ◽  
...  

White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.


Sign in / Sign up

Export Citation Format

Share Document