User-friendly Carbonate Chemistry Charts

2001 ◽  
Vol 93 (11) ◽  
pp. 86-93 ◽  
Author(s):  
Issam Najm
2018 ◽  
Vol 15 (9) ◽  
pp. 2819-2834 ◽  
Author(s):  
Thomas M. DeCarlo ◽  
Michael Holcomb ◽  
Malcolm T. McCulloch

Abstract. The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B∕Ca partition coefficient (KD) between aragonite and seawater, measurements of coral skeleton δ11B and B∕Ca can potentially constrain the full carbonate system. Two sets of abiogenic aragonite precipitation experiments designed to quantify KD have recently made possible the application of this proxy system. However, while different KD formulations have been proposed, there has not yet been a comprehensive analysis that considers both experimental datasets and explores the implications for interpreting coral skeletons. Here, we evaluate four potential KD formulations: three previously presented in the literature and one newly developed. We assess how well each formulation reconstructs the known fluid carbonate chemistry from the abiogenic experiments, and we evaluate the implications for deriving the carbonate chemistry of coral calcifying fluid. Three of the KD formulations performed similarly when applied to abiogenic aragonites precipitated from seawater and to coral skeletons. Critically, we find that some uncertainty remains in understanding the mechanism of boron elemental partitioning between aragonite and seawater, and addressing this question should be a target of additional abiogenic precipitation experiments. Despite this, boron systematics can already be applied to quantify the coral calcifying fluid carbonate system, although uncertainties associated with the proxy system should be carefully considered for each application. Finally, we present a user-friendly computer code that calculates coral calcifying fluid carbonate chemistry, including propagation of uncertainties, given inputs of boron systematics measured in coral skeleton.


2018 ◽  
Author(s):  
Thomas M. DeCarlo ◽  
Michael Holcomb ◽  
Malcolm T. McCulloch

Abstract. The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B / Ca partition coefficient (KD) between aragonite and seawater, measurements of coral skeleton δ11B and B / Ca can potentially constrain the full carbonate system. Two sets of abiogenic aragonite precipitation experiments designed to quantify KD have recently made possible the application of this proxy system. However, while different KD formulations have been proposed, there has not yet been a comprehensive analysis that considers both experimental datasets and explores the implications for interpreting coral skeletons. Here, we evaluate four potential KD formulations: three previously presented in the literature and one newly developed. We assess how well each formulation reconstructs the known fluid carbonate chemistry from the abiogenic experiments, and we evaluate the implications for deriving the carbonate chemistry of coral calcifying fluid. Three of the KD formulations performed similarly when applied to abiogenic aragonites precipitated from seawater and to coral skeletons. Critically, we find that some uncertainty remains in understanding the mechanism of boron elemental partitioning between aragonite and seawater, and addressing this question should be a target of additional abiogenic precipitation experiments. Despite this, boron systematics can already be applied to quantify the coral calcifying fluid carbonate system, although uncertainties associated with the proxy system should be carefully considered for each application. Finally, we present a user-friendly computer code that calculates coral calcifying fluid carbonate chemistry, including propagation of uncertainties, given inputs of boron systematics measured in coral skeleton.


Author(s):  
B. Lencova ◽  
G. Wisselink

Recent progress in computer technology enables the calculation of lens fields and focal properties on commonly available computers such as IBM ATs. If we add to this the use of graphics, we greatly increase the applicability of design programs for electron lenses. Most programs for field computation are based on the finite element method (FEM). They are written in Fortran 77, so that they are easily transferred from PCs to larger machines.The design process has recently been made significantly more user friendly by adding input programs written in Turbo Pascal, which allows a flexible implementation of computer graphics. The input programs have not only menu driven input and modification of numerical data, but also graphics editing of the data. The input programs create files which are subsequently read by the Fortran programs. From the main menu of our magnetic lens design program, further options are chosen by using function keys or numbers. Some options (lens initialization and setting, fine mesh, current densities, etc.) open other menus where computation parameters can be set or numerical data can be entered with the help of a simple line editor. The "draw lens" option enables graphical editing of the mesh - see fig. I. The geometry of the electron lens is specified in terms of coordinates and indices of a coarse quadrilateral mesh. In this mesh, the fine mesh with smoothly changing step size is calculated by an automeshing procedure. The options shown in fig. 1 allow modification of the number of coarse mesh lines, change of coordinates of mesh points or lines, and specification of lens parts. Interactive and graphical modification of the fine mesh can be called from the fine mesh menu. Finally, the lens computation can be called. Our FEM program allows up to 8000 mesh points on an AT computer. Another menu allows the display of computed results stored in output files and graphical display of axial flux density, flux density in magnetic parts, and the flux lines in magnetic lenses - see fig. 2. A series of several lens excitations with user specified or default magnetization curves can be calculated and displayed in one session.


2012 ◽  
Vol 21 (2) ◽  
pp. 60-71 ◽  
Author(s):  
Ashley Alliano ◽  
Kimberly Herriger ◽  
Anthony D. Koutsoftas ◽  
Theresa E. Bartolotta

Abstract Using the iPad tablet for Augmentative and Alternative Communication (AAC) purposes can facilitate many communicative needs, is cost-effective, and is socially acceptable. Many individuals with communication difficulties can use iPad applications (apps) to augment communication, provide an alternative form of communication, or target receptive and expressive language goals. In this paper, we will review a collection of iPad apps that can be used to address a variety of receptive and expressive communication needs. Based on recommendations from Gosnell, Costello, and Shane (2011), we describe the features of 21 apps that can serve as a reference guide for speech-language pathologists. We systematically identified 21 apps that use symbols only, symbols and text-to-speech, and text-to-speech only. We provide descriptions of the purpose of each app, along with the following feature descriptions: speech settings, representation, display, feedback features, rate enhancement, access, motor competencies, and cost. In this review, we describe these apps and how individuals with complex communication needs can use them for a variety of communication purposes and to target a variety of treatment goals. We present information in a user-friendly table format that clinicians can use as a reference guide.


PsycCRITIQUES ◽  
2010 ◽  
Vol 55 (26) ◽  
Author(s):  
Jay C. Wade
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document