Localization of Drug Release Sites from an Oral Sustained-Release Formulation of 5-ASA (Pentasa®) in the Gastrointestinal Tract Using Gamma Scintigraphy

1993 ◽  
Vol 33 (8) ◽  
pp. 712-718 ◽  
Author(s):  
J. G. Hardy ◽  
W. J. Harvey ◽  
R. A. Sparrow ◽  
G. B. Marshall ◽  
K. P. Steed ◽  
...  
2011 ◽  
Vol 311-313 ◽  
pp. 1751-1754
Author(s):  
Gui Yu Li ◽  
Xi Hong Lu ◽  
Xue Hu Li ◽  
Lei Tao ◽  
Jian Ping Liang

Drug was encapsulated in a novel copolymers of poly(lactic-co-glycolic acid) (PLGA) to investigate the sustained-release formulation of drug loaded polymer microspheres delivery system. Used a modified solid-in-oil-in-water (S/O/W) emulsion solvent evaporation method to prepare microspheres, its morphology and particle size distribution were estimated by scanning electron microscopy (SEM), the profile of in vitro drug release were assessed by High performance liquid chromatography (HPLC). Finally, an stable release buffer was utilized to obtain a detailed drug release profile, which was analyzed by HPLC also. Results showed that the microspheres morphology, encapsulation efficiency and the cumulative drug release efficiency were appropriate for veterinary medicine using. The modified preparation method was simple and optimized, PLGA microspheres with excellent controlled-release characteristics may serve as drug delivery carrier and may prolong the drug sustained-release effect.


2019 ◽  
Vol 9 (3) ◽  
pp. 232-242 ◽  
Author(s):  
Rutuja Deshmukh ◽  
Mrunal Waghulde ◽  
Satyendra Mishra ◽  
Jitendra Naik

Background: Treating the disease like diabetes is essential due to its wide range of spreading and heredity issues. Glipizide is the commonly used drug for the treatment of diabetes. Glipizide loaded sustained release nanoparticles have been developed to avoid repeated dosing. Objective: The study aimed to develop glipizide-loaded sustained release nanoparticles and characterize them for different studies. Methods: The aim of the present study was to develop glipizide-loaded sustained release nanoparticles using different polymers by the solvent evaporation method. The polymers; Eudragit (RS 100) in combination with Polycaprolactone (PCL) were used to encapsulate glipizide. Optimization of all parameters was performed as per Design Expert software by utilizing a 32 full factorial design. The developed nanoparticles were characterized using Fourier transformed infrared spectroscopy, X-ray diffraction, scanning electron microscopy and in-vitro drug release study. Results: FE-SEM showed that the surface morphology of nanoparticles was smooth and spherical as well as in an oval shape. FTIR shows there is no interaction between polymers and drug. XRD results showed that the crystallinity of pure glipizide reduced from 89.5 to 56.7% when converted into sustained release nanoparticles formulation. Sustained drug release over the period of 12 h was observed due to well encapsulation of glipizide by the polymers. Conclusion: Glipizide loaded nanoparticles were developed with good encapsulation efficiency using a combination of two different biocompatible polymers. The drug release behavior showed that they can be used to develop the sustained release formulation to reduce the side effect caused by over drug uptake as compared to the conventional formulation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1049
Author(s):  
Matthew Lam ◽  
Nour Nashed ◽  
Ali Nokhodchi

The Liqui-Mass technology (also known as Liqui-Pellet technology) has shown promising results in terms of enhancing the drug release rate of water insoluble drugs in a simplistic approach. However, there is no current study on sustained-release formulation using the Liqui-Mass technology. In this study, an attempt was made to produce a sustained-release Liqui-Tablet for the first time using a matrix-based approach. The non-volatile co-solvent used in the investigation included Tween 80, Tween 20 and Kolliphor EL. The production of sustained-release propranolol hydrochloride Liqui-Tablet was successful, and data from the saturation solubility test and dissolution test did not show much difference among the mentioned non-volatile co-solvent. The best Liqui-Tablet formulation took 24 h for drug release to reach at around 100%. There seemed to be a synergistic retarding drug release effect when a non-volatile co-solvent and Eudragit RS PO were used together. The increase of Eudragit RS PO concentration increased the retardant effect. Kinetic drug release analysis suggests that the best formulation followed the Higuchi model. The flowability of pre-compressed Liqui-Tablet pellets had no issues and its size distribution was narrow. Liqui-Tablet was generally robust and most formulations passed the friability test. The study revealed that Liqui-Mass technology can be employed to sustain drug release.


2014 ◽  
Vol 2 (01) ◽  
pp. 68-75 ◽  
Author(s):  
Swapnil J. Kodalkar ◽  
Rohan A. Khutale ◽  
Sachin S. Salunkhe ◽  
Sachin S. Mali ◽  
Sameer J. Nadaf

In present study, the attempts have been made to formulate sustained release tablets of lornoxicam by direct compression method. Based on viscosity grades different proportions of hydrophilic polymers (HPMC K4M, HPMC K15M, HPMC K100M) are used for preparation of lornoxicam sustained release matrix tablet. The drug excipient mixtures were subjected to preformulation studies comprising of micromeritic properties. The tablets were subjected to various studies like as physicochemical studies, in vitro drug release, kinetic studies, etc. FTIR studies shown there was no interaction between drug and polymers. The physicochemical properties of tablets were found within the limits. Lornoxicam is a first generation analgesic, inflammatory and antipyretic agent used in relieving symptoms of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, acute sciatica and low back pain. From developed formulations batch F1 have shown zero order drug release behavior and prolong drug release over a period of 12 h which was deemed as suitable and optimum formulation for sustained drug delivery. Results of the present study indicated the suitability of the low viscous polymer in the proportion of (drug:polymer) 1:1 in the preparation of sustained release formulation of lornoxicam.


Author(s):  
B. Ramu ◽  
S. Ullas Kumar ◽  
G. Srikanth ◽  
Bigala Rajkamal

The aim of the present study was to develop sustained release formulation of Verapamil Hydrochloride to maintain constant therapeutic levels of the drug for over 12 hrs. Various grades of HPMC polymers, Guar gum, and Xanthum gum were employed as polymers. Verapamil Hydrochloride dose was fixed as 120 mg. Total weight of the tablet was considered as 400 mg. Polymers were used in the concentration of 60, 120 and 180 mg concentration. All the formulations were passed various physicochemical evaluation parameters and they were found to be within limits. Whereas from the dissolution studies it was evident that the formulation (F6) showed better and desired drug release pattern i.e.,96.10 % in 12 hours containing Guar gum polymer in the concentration of 180mg. It followed zero order release kinetics. For the optimized formulation alcohol effect has been studied by using various concentrations of alcohol in dissolution medium. As the concentration of alcohol increased the sustained action of polymer was decreased. Hence it was concluded that alcohol has significant effect on drug release pattern.


Sign in / Sign up

Export Citation Format

Share Document