Axial resolution enhancement of light-sheet microscopy by double scanning of Bessel beam and its complementary beam

2018 ◽  
Vol 12 (1) ◽  
pp. e201800094 ◽  
Author(s):  
Hao Jia ◽  
Xianghua Yu ◽  
Yanlong Yang ◽  
Xing Zhou ◽  
Shaohui Yan ◽  
...  
Development ◽  
2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
H.-Arno J. Müller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
Hans-Arno J Mueller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


Author(s):  
Marie Caroline Müllenbroich ◽  
Ludovico Silvestri ◽  
Lapo Turrini ◽  
Antonino Paolo Di Giovanna ◽  
Tommaso Alterini ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sota Takanezawa ◽  
Takashi Saitou ◽  
Takeshi Imamura

AbstractTwo-photon excitation can lower phototoxicity and improve penetration depth, but its narrow excitation range restricts its applications in light-sheet microscopy. Here, we propose simple illumination optics, a lens-axicon triplet composed of an axicon and two convex lenses, to generate longer extent Bessel beams. This unit can stretch the beam full width at half maximum of 600–1000 μm with less than a 4-μm waist when using a 10× illumination lens. A two-photon excitation digital scanned light-sheet microscope possessing this range of field of view and ~2–3-μm axial resolution is constructed and used to analyze the cellular dynamics over the whole body of medaka fish. We demonstrate long-term time-lapse observations over several days and high-speed recording with ~3 mm3 volume per 4 s of the embryos. Our system is minimal and suppresses laser power loss, which can broaden applications of two-photon excitation in light-sheet microscopy.


2021 ◽  
Author(s):  
Stefan Wunderl ◽  
Ayumu Ishijima ◽  
Etsuo Susaki ◽  
Zihui Xu ◽  
Hong Song ◽  
...  

Light-sheet imaging of 3D objects with high spatial resolution remains an open challenge because of the trade-off between field-of-view (FOV) and axial resolution originating from the diffraction of light. We developed acoustic light-sheet microscopy (acoustic LSM), which actively manipulates the light propagation inside a large sample to obtain wide-field microscopic images deep inside a target. By accurately coupling a light-sheet illumination pulse into a planar acoustic pulse, the light-sheet can be continuously guided over large distances. We imaged a fluorescence-labeled transparent mouse brain for the FOVs of 19.3 x 12.4 mm2 and 9.7 x 5.9 mm2 with resolved microstructures and single cells deep inside the brain. Acoustic LSM creates new opportunities for the application of light-sheet in the field of industry to basic science.


Sign in / Sign up

Export Citation Format

Share Document