scholarly journals Acoustic light-sheet microscopy

2021 ◽  
Author(s):  
Stefan Wunderl ◽  
Ayumu Ishijima ◽  
Etsuo Susaki ◽  
Zihui Xu ◽  
Hong Song ◽  
...  

Light-sheet imaging of 3D objects with high spatial resolution remains an open challenge because of the trade-off between field-of-view (FOV) and axial resolution originating from the diffraction of light. We developed acoustic light-sheet microscopy (acoustic LSM), which actively manipulates the light propagation inside a large sample to obtain wide-field microscopic images deep inside a target. By accurately coupling a light-sheet illumination pulse into a planar acoustic pulse, the light-sheet can be continuously guided over large distances. We imaged a fluorescence-labeled transparent mouse brain for the FOVs of 19.3 x 12.4 mm2 and 9.7 x 5.9 mm2 with resolved microstructures and single cells deep inside the brain. Acoustic LSM creates new opportunities for the application of light-sheet in the field of industry to basic science.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ashna Alladin ◽  
Lucas Chaible ◽  
Lucia Garcia del Valle ◽  
Reither Sabine ◽  
Monika Loeschinger ◽  
...  

Cancer clone evolution takes place within tissue ecosystem habitats. But, how exactly tumors arise from a few malignant cells within an intact epithelium is a central, yet unanswered question. This is mainly due to the inaccessibility of this process to longitudinal imaging together with a lack of systems that model the progression of a fraction of transformed cells within a tissue. Here, we developed a new methodology based on primary mouse mammary epithelial acini, where oncogenes can be switched on in single cells within an otherwise normal epithelial cell layer. We combine this stochastic breast tumor induction model with inverted light-sheet imaging to study single-cell behavior for up to four days and analyze cell fates utilizing a newly developed image-data analysis workflow. The power of this integrated approach is illustrated by us finding that small local clusters of transformed cells form tumors while isolated transformed cells do not.


2014 ◽  
Vol 5 (10) ◽  
pp. 3311 ◽  
Author(s):  
Atsushi Maruyama ◽  
Yusuke Oshima ◽  
Hiroko Kajiura-Kobayashi ◽  
Shigenori Nonaka ◽  
Takeshi Imamura ◽  
...  

2019 ◽  
Vol 116 (49) ◽  
pp. 24796-24807 ◽  
Author(s):  
Christine A. Schneider ◽  
Dario X. Figueroa Velez ◽  
Ricardo Azevedo ◽  
Evelyn M. Hoover ◽  
Cuong J. Tran ◽  
...  

Brain infection by the parasite Toxoplasma gondii in mice is thought to generate vulnerability to predation by mechanisms that remain elusive. Monocytes play a key role in host defense and inflammation and are critical for controlling T. gondii. However, the dynamic and regional relationship between brain-infiltrating monocytes and parasites is unknown. We report the mobilization of inflammatory (CCR2+Ly6Chi) and patrolling (CX3CR1+Ly6Clo) monocytes into the blood and brain during T. gondii infection of C57BL/6J and CCR2RFP/+CX3CR1GFP/+ mice. Longitudinal analysis of mice using 2-photon intravital imaging of the brain through cranial windows revealed that CCR2-RFP monocytes were recruited to the blood–brain barrier (BBB) within 2 wk of T. gondii infection, exhibited distinct rolling and crawling behavior, and accumulated within the vessel lumen before entering the parenchyma. Optical clearing of intact T. gondii-infected brains using iDISCO+ and light-sheet microscopy enabled global 3D detection of monocytes. Clusters of T. gondii and individual monocytes across the brain were identified using an automated cell segmentation pipeline, and monocytes were found to be significantly correlated with sites of T. gondii clusters. Computational alignment of brains to the Allen annotated reference atlas [E. S. Lein et al., Nature 445:168–176 (2007)] indicated a consistent pattern of monocyte infiltration during T. gondii infection to the olfactory tubercle, in contrast to LPS treatment of mice, which resulted in a diffuse distribution of monocytes across multiple brain regions. These data provide insights into the dynamics of monocyte recruitment to the BBB and the highly regionalized localization of monocytes in the brain during T. gondii CNS infection.


2020 ◽  
Vol 14 ◽  
Author(s):  
Bo M. B. Bekkouche ◽  
Helena K. M. Fritz ◽  
Elisa Rigosi ◽  
David C. O'Carroll

Improvement of imaging quality has the potential to visualize previously unseen building blocks of the brain and is therefore one of the great challenges in neuroscience. Rapid development of new tissue clearing techniques in recent years have attempted to solve imaging compromises in thick brain samples, particularly for high resolution optical microscopy, where the clearing medium needs to match the high refractive index of the objective immersion medium. These problems are exacerbated in insect tissue, where numerous (initially air-filled) tracheal tubes branching throughout the brain increase the scattering of light. To date, surprisingly few studies have systematically quantified the benefits of such clearing methods using objective transparency and tissue shrinkage measurements. In this study we compare a traditional and widely used insect clearing medium, methyl salicylate combined with permanent mounting in Permount (“MS/P”) with several more recently applied clearing media that offer tunable refractive index (n): 2,2′-thiodiethanol (TDE), “SeeDB2” (in variants SeeDB2S and SeeDB2G matched to oil and glycerol immersion, n = 1.52 and 1.47, respectively) and Rapiclear (also with n = 1.52 and 1.47). We measured transparency and tissue shrinkage by comparing freshly dissected brains with cleared brains from dipteran flies, with or without addition of vacuum or ethanol pre-treatments (dehydration and rehydration) to evacuate air from the tracheal system. The results show that ethanol pre-treatment is very effective for improving transparency, regardless of the subsequent clearing medium, while vacuum treatment offers little measurable benefit. Ethanol pre-treated SeeDB2G and Rapiclear brains show much less shrinkage than using the traditional MS/P method. Furthermore, at lower refractive index, closer to that of glycerol immersion, these recently developed media offer outstanding transparency compared to TDE and MS/P. Rapiclear protocols were less laborious compared to SeeDB2, but both offer sufficient transparency and refractive index tunability to permit super-resolution imaging of local volumes in whole mount brains from large insects, and even light-sheet microscopy. Although long-term permanency of Rapiclear stored samples remains to be established, our samples still showed good preservation of fluorescence after storage for more than a year at room temperature.


Optica ◽  
2016 ◽  
Vol 3 (8) ◽  
pp. 897 ◽  
Author(s):  
Yicong Wu ◽  
Panagiotis Chandris ◽  
Peter W. Winter ◽  
Edward Y. Kim ◽  
Valentin Jaumouillé ◽  
...  

2017 ◽  
Author(s):  
Yicong Wu ◽  
Abhishek Kumar ◽  
Corey Smith ◽  
Evan Ardiel ◽  
Panagiotis Chandris ◽  
...  

AbstractLight-sheet fluorescence microscopy (LSFM) enables high-speed, high-resolution, gentle imaging of live biological specimens over extended periods. Here we describe a technique that improves the spatiotemporal resolution and collection efficiency of LSFM without modifying the underlying microscope. By imaging samples on reflective coverslips, we enable simultaneous collection of multiple views, obtaining 4 complementary views in 250 ms, half the period it would otherwise take to collect only two views in symmetric dual-view selective plane illumination microscopy (diSPIM). We also report a modified deconvolution algorithm that removes the associated epifluorescence contamination and fuses all views for resolution recovery. Furthermore, we enhance spatial resolution (to < 300 nm in all three dimensions) by applying our method to a new asymmetric diSPIM, permitting simultaneous acquisition of two high-resolution views otherwise difficult to obtain due to steric constraints at high numerical aperture (NA). We demonstrate the broad applicability of our method in a variety of samples of moderate (< 50 μm) thickness, studying mitochondrial, membrane, Golgi, and microtubule dynamics in single cells and calcium activity in nematode embryos.


Development ◽  
2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
H.-Arno J. Müller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


Author(s):  
Paola Perin ◽  
Riccardo Rossetti ◽  
Carolina Ricci ◽  
Daniele Cossellu ◽  
Simone Lazzarini ◽  
...  

The choroid plexus (CP) acts as a regulated gate between blood and cerebrospinal fluid (CSF). Despite its simple histology (a monostratified cuboidal epithelium overlying a vascularized stroma), this organ has remarkably complex functions several of which involve local interaction with cells located around ventricle walls. Our knowledge of CP structural organization is mainly derived from resin casts, which capture the overall features but only allow reconstruction of the vascular pattern surface, unrelated to the overlying epithelium and only loosely related to ventricular location. Recently, CP single cell atlases are starting to emerge, providing insight on local heterogeneities and interactions. So far, however, few studies have described CP spatial organization at the mesoscale level, because of its fragile nature and deep location within the brain. Here, using an iDISCO-based clearing approach and light-sheet microscopy, we have reconstructed the normal rat hindbrain CP (hCP) macro- and microstructure, using markers for epithelium, arteries, microvasculature, and macrophages, and noted its association with 4th ventricle-related neurovascular structures. The hCP is organized in domains associated to a main vessel (fronds) which carry a variable number of villi; the latter are enclosed by epithelium and may be flat (leaf-like) or rolled up to variable extent. Arteries feeding the hCP emerge from the cerebellar surface, and branch into straight arterioles terminating as small capillary anastomotic networks, which run within a single villus and terminate attaching multiple times to a large tortuous capillary (LTC) which ends into a vein. Venous outflow mostly follows arterial pathways, except for the lateral horizontal segment (LHS) and the caudal sagittal segment. The structure of fronds and villi is related to the microvascular pattern at the hCP surface: when LTCs predominate, leaflike villi are more evident and bulge from the surface; different, corkscrew-like villi are observed in association to arterioles reaching close to the CP surface with spiraling capillaries surrounding them. Both leaf-like and corkscrew-like villi may reach the 4th ventricle floor, making contact points at their tip, where no gap is seen between CP epithelium and ependyma. Contacts usually involve several adjacent villi and may harbor epiplexus macrophages. At the junction between medial (MHS) and lateral (LHS) horizontal segment, arterial supply is connected to the temporal bone subarcuate fossa, and venous outflow drains to a ventral vein which exits through the cochlear nuclei at the Luschka foramen. These vascular connections stabilize the hCP overall structure within the 4th ventricle but make MHS-LHS joint particularly fragile and very easily damaged when removing the brain from the skull. Even in damaged samples, however, CP fronds (or isolated villi) often remain strongly attached to the dorsal cochlear nucleus (DCN) surface; in these fronds, contacts are still present and connecting “bridges” may be seen, suggesting the presence of real molecular contacts rather than mere appositions.


2016 ◽  
Vol 27 (22) ◽  
pp. 3418-3435 ◽  
Author(s):  
François Aguet ◽  
Srigokul Upadhyayula ◽  
Raphaël Gaudin ◽  
Yi-ying Chou ◽  
Emanuele Cocucci ◽  
...  

Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies.


Sign in / Sign up

Export Citation Format

Share Document