Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment: A histomorphometric study in the rabbit femur

2008 ◽  
Vol 84B (2) ◽  
pp. 400-407 ◽  
Author(s):  
Jin-Woo Park ◽  
Il-Sung Jang ◽  
Jo-Young Suh
Biomaterials ◽  
1994 ◽  
Vol 15 (13) ◽  
pp. 1062-1074 ◽  
Author(s):  
C. Larsson ◽  
P. Thomsen ◽  
J. Lausmaa ◽  
M. Rodahl ◽  
B. Kasemo ◽  
...  

Biomaterials ◽  
1996 ◽  
Vol 17 (6) ◽  
pp. 605-616 ◽  
Author(s):  
C. Larsson ◽  
P. Thomsen ◽  
B.-O. Aronsson ◽  
M. Rodahl ◽  
J. Lausmaa ◽  
...  

2017 ◽  
Vol 58 ◽  
pp. 550-560 ◽  
Author(s):  
Anish Shivaram ◽  
Susmita Bose ◽  
Amit Bandyopadhyay

2015 ◽  
Vol 41 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Marco Mozzati ◽  
Giorgia Gallesio ◽  
Massimo Del Fabbro

The aim of this paper is to retrospectively assess the long-term clinical and radiological results in a group of patients treated with Brånemark TiUnite implants supporting mostly single-tooth and partial restorations. The clinical records of 90 consecutive patients (mean age 55.9 years; range 21–82 years), treated with 209 Brånemark System MkIII or MkIV TiUnite implants (72 maxillary/137 mandibular; 26 anterior intercanine/183 posterior sites), were analyzed. Indication types were single tooth (n = 21 implants), partial (n = 180) and full arches (n = 8). A delayed loading protocol was applied in 128 implants, while 81 were immediately loaded. Cumulative survival rate and marginal bone remodeling were evaluated. Marginal bone level was evaluated by an independent radiologist from periapical radiographs taken at implant insertion and at long-term follow up. Plaque, probing pocket depth and peri-implant mucosa conditions were also assessed. The results showed the mean follow-up duration was 11.0 years (range 9.6–12.4 years): 181 implants (90.5%) reached at least 10 years follow-up, 100 implants 11 years, and 17 implants 12 years. Overall, 6 implants failed in 4 patients (5 during the first year and 1 after 2 years) resulting in a 97.1% survival rate after 12 years. Mean bone levels at implant insertion and at the last follow up were −0.90 ± 1.16 mm (mean ± SD; n = 169) and −1.49 ± 0.95 mm (n = 195), respectively. Mean marginal bone remodeling from implant insertion to the last follow-up was −0.60 ± 1.17 mm (n = 168). At the last available follow-up, mean pocket depth was 1.65 ± 0.84 mm. Peri-implant mucosa was normal for the majority (97%) of implants. In conclusion, this retrospective long-term study showed excellent survival rate of TiUnite implants as well as favorable marginal bone response and soft tissue conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio Scarano ◽  
Ezio Crocetta ◽  
Alessandro Quaranta ◽  
Felice Lorusso

Background. Pure titanium continues to be the first choice for dental implants and represents the gold standard for their biocompatibility and physical and mechanical characteristics, while the titanium alloy (Ti6Al4V) has good mechanical properties. The surface structure of the titanium oxide layer formation on the surface influences and improves the bone response around dental implants. Purpose. The purpose of this study is to evaluate the influence of a thermal treatment of Ti6Al4V implant surfaces and the bone healing response in a rabbit model. Methods. Altogether sixteen implants with same design were inserted into the distal femoral metaphysis. A screw (13 mm long, 4 mm in diameter) was inserted in an implant bed. Each rabbit received two implants, one in the left femur and one in the right femur. The samples were histologically and histomorphometrically evaluated at 8 weeks. Results. A statistically significant difference (p = 0.000034) was present histologically in the percentages of bone-implant contact (BIC) between the test group (BIC = 69.25±4.49%.) and control group (BIC = 56.25 ± 4.8%) by one-way analysis of variance (ANOVA). Significance was set at p ≤ 0.05. Conclusions. The outcome of the present study indicates a novel approach to improving bone healing around titanium implants.


2005 ◽  
Vol 31 (5) ◽  
pp. 225-233 ◽  
Author(s):  
Giovanna Iezzi ◽  
Marco Degidi ◽  
Antonio Scarano ◽  
Vittoria Perrotti ◽  
Adriano Piattelli

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Jin-Woo Park ◽  
Yusuke Tsutsumi ◽  
Eui-Kyun Park

The manganese (Mn) ion has recently been probed as a potential candidate element for the surface chemistry modification of titanium (Ti) implants in order to develop a more osteogenic surface with the expectation of taking advantage of its strong binding affinity to the integrins on bone-forming cells. However, the exact mechanism of how Mn enhances osteogenesis when introduced into the surface of Ti implants is not clearly understood. This study investigated the corrosion resistance and potential osteogenic capacity of a Mn-incorporated Ti surface as determined by electrochemical measurement and examining the behaviors of human mesenchymal stem cells (MSCs) in a clinically available sandblasted/acid-etched (SLA) oral implant surface intended for future biomedical applications. The surface that resulted from wet chemical treatment exhibited the formation of a Mn-containing nanostructured TiO2 anatase thin film in the SLA implant and improved corrosion resistance. The Mn-incorporated SLA surface displayed sustained Mn ion release and enhanced osteogenesis-related MSC function, which enhanced early cellular events such as spreading, focal adhesion, and mRNA expression of critical adhesion-related genes and promoted full human MSC differentiation into mature osteoblasts. Our findings indicate that surface Mn modification by wet chemical treatment is an effective approach to produce a Ti implant surface with increased osteogenic capacity through the promotion of the osteogenic differentiation of MSCs. The improved corrosion resistance of the resultant surface is yet another important benefit of being able to provide favorable osseointegration interface stability with an increased barrier effect.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 461
Author(s):  
Paula Navarro ◽  
Alberto Olmo ◽  
Mercè Giner ◽  
Marleny Rodríguez-Albelo ◽  
Ángel Rodríguez ◽  
...  

The chemical composition and surface topography of titanium implants are essential to improve implant osseointegration. The present work studies a non-invasive alternative of electrical impedance spectroscopy for the characterization of the macroporosity inherent to the manufacturing process and the effect of the surface treatment with femtosecond laser of titanium discs. Osteoblasts cell culture growths on the titanium surfaces of the laser-treated discs were also studied with this method. The measurements obtained showed that the femtosecond laser treatment of the samples and cell culture produced a significant increase (around 50%) in the absolute value of the electrical impedance module, which could be characterized in a wide range of frequencies (being more relevant at 500 MHz). Results have revealed the potential of this measurement technique, in terms of advantages, in comparison to tiresome and expensive techniques, allowing semi-quantitatively relating impedance measurements to porosity content, as well as detecting the effect of surface modification, generated by laser treatment and cell culture.


Sign in / Sign up

Export Citation Format

Share Document