scholarly journals Deletion of the DistalTnfsf11RL-D2 Enhancer That Contributes to PTH-Mediated RANKL Expression in Osteoblast Lineage Cells Results in a High Bone Mass Phenotype in Mice

2016 ◽  
Vol 31 (2) ◽  
pp. 416-429 ◽  
Author(s):  
Melda Onal ◽  
Hillary C St. John ◽  
Allison L Danielson ◽  
J Wesley Pike
2017 ◽  
Vol 59 (4) ◽  
pp. 351-363 ◽  
Author(s):  
Alexander Kot ◽  
Zhendong A Zhong ◽  
Hongliang Zhang ◽  
Yu-An Evan Lay ◽  
Nancy E Lane ◽  
...  

Increasing peak bone mass is a promising strategy to prevent osteoporosis. A mouse model of global progesterone receptor (PR) ablation showed increased bone mass through a sex-dependent mechanism. Cre-Lox recombination was used to generate a mouse model of osteoprogenitor-specific PR inactivation, which recapitulated the high bone mass phenotype seen in the PR global knockout mouse mode. In this work, we employed RNA sequencing analysis to evaluate sex-independent and sex-dependent differences in gene transcription of osteoprogenitors of wild-type and PR conditional knockout mice. PR deletion caused marked sex hormone-dependent changes in gene transcription in male mice as compared to wild-type controls. These transcriptional differences revealed dysregulation in pathways involving immunomodulation, osteoclasts, bone anabolism, extracellular matrix interaction and matrix interaction. These results identified many potential mechanisms that may explain our observed high bone mass phenotype with sex differences when PR was selectively deleted in the MSCs.


2007 ◽  
Vol 22 (5) ◽  
pp. 708-716 ◽  
Author(s):  
Wendy Balemans ◽  
Jean-Pierre Devogelaer ◽  
Erna Cleiren ◽  
Elke Piters ◽  
Emanuelle Caussin ◽  
...  

Bone ◽  
2010 ◽  
Vol 47 ◽  
pp. S40
Author(s):  
M. Rauner⁎ ◽  
W. Bauer ◽  
I. Habermann ◽  
M. Haase ◽  
C. Goettsch ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e98388 ◽  
Author(s):  
Glyn D. Palmer ◽  
Mukundan G. Attur ◽  
Qing Yang ◽  
James Liu ◽  
Paxton Moon ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Nick Clough ◽  
Justin Williams ◽  
Uma Sankar

Background and Hypothesis:   The Ca+2/calmodulin (CaM)-mediated protein kinase kinase 2 (CaMKK2) is a multi-functional kinase with effects on cell proliferation, differentiation and metabolism. The role of CaMKK2 in bone has been explored with its ablation favoring osteoblasts to osteoclasts and bone mass accrual as observed in Camkk2-/- mice, or following its inhibition by STO-609. One outstanding question is whether the anabolic effects of CaMKK2 are bone-cell intrinsic. While analyzing mice harboring bone-cell specific deletion of CaMKK2, we observed a high bone mass phenotype when the kinase is deleted from osteocytes, the most abundant cells within the bone. We therefore hypothesized that the loss of CaMKK2 enhances osteocyte differentiation.  Experimental Design or Project Methods:  We used two osteocyte cell lines MLO-Y4 and MLO-A5, both generated from mice expressing the immortalizing T-antigen, to test our hypothesis. The MLO-A5 line has post-osteoblast/pre-osteocyte characteristics while the MLO-Y4 line has mature osteocyte characteristics. CaMKK2 expression was silenced in MLO-A5 cells using Lentiviruses encoding CaMKK2 short hairpin (sh) RNA constructs. STO-609 was employed to inhibit CaMKK2 in the MLO-Y4 line as it proved resistant to transfection. Immunoblotting was used to verify CaMKK2 silencing/inhibition. Comparisons on cell morphologies were observed using immunofluorescence. As osteocytes are defined by dendritic morphology, the number of dendritic processes were analyzed. Additionally, the differences in the expression of the osteocyte markers SOST, E11 and DMP1 were examined by qRT-PCR.  Results:  To be finalized.  Conclusion and Potential Impact:  Overall, our studies will provide more information towards understanding the role of CaMKK2 in bone biology and aid its development as a therapeutic target in the treatment of osteoporosis.


2007 ◽  
Vol 22 (8) ◽  
pp. 1217-1223 ◽  
Author(s):  
Kaoru Washio-Oikawa ◽  
Takahisa Nakamura ◽  
Michihiko Usui ◽  
Mitsuhiro Yoneda ◽  
Youichi Ezura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document