high bone mass phenotype
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2022 ◽  
Vol 12 ◽  
Author(s):  
Suruchi Pacharne ◽  
Matthew Livesey ◽  
Mahita Kadmiel ◽  
Ning Wang ◽  
Kathleen M. Caron ◽  
...  

Knockout technologies provide insights into physiological roles of genes. Studies initiated into endocrinology of heteromeric G protein-coupled receptors included deletion of receptor activity modifying protein-3, an accessory protein that alters ligand selectivity of calcitonin and calcitonin-like receptors. Initially, deletion of Ramp3-/- appeared phenotypically silent, but it has emerged that mice have a high bone mass phenotype, and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion of the effects of adrenomedullin on cardiovascular and lymphatic systems. Here we explore in detail, effects of Ramp3-/- deletion on skeletal growth/development, bone mass and response of bone to mechanical loading mimicking exercise. Mouse pups lacking RAMP3 are healthy and viable, having accelerated development of the skeleton as assessed by degree of mineralisation of specific bones, and by microCT measurements. Specifically, we observed that neonates and young mice have increased bone volume and mineralisation in hindlimbs and vertebrae and increased thickness of bone trabeculae. These changes are associated with increased osteoblast numbers and bone apposition rate in Ramp3-/- mice, and increased cell proliferation in epiphyseal growth plates. Effects persist for some weeks after birth, but differences in gross bone mass between RAMP3 and WT mice lose significance in older animals although architectural differences persist. Responses of bones of 17-week old mice to mechanical loading that mimics effects of vigorous exercise is increased significantly in Ramp3-/- mice by 30% compared with WT control mice. Studies on cultured osteoblasts from Ramp3-/- mice indicate interactions between mRNA expression of RAMPs1 and 3, but not RAMP2 and 3. Our preliminary data shows that Ramp3-/- osteoblasts had increased expression β-catenin, a component of the canonical Wnt signalling pathway known to regulate skeletal homeostasis and mechanosensitivity. Given interactions of RAMPs with both calcitonin and calcitonin-like receptors to alter ligand selectivity, and with other GPCRs to change trafficking or ligand bias, it is not clear whether the bone phenotype of Ramp3-/- mice is due to alterations in signalling mediated by one or more GPCRS. However, as antagonists of RAMP-interacting receptors are growing in availability, there appears the likelihood that manipulation of the RAMP3 signalling system could provide anabolic effects therapeutically.


2021 ◽  
Author(s):  
Ellen Busschers ◽  
Naseer Ahmad ◽  
Li Sun ◽  
James R Iben ◽  
Christopher J. Walkey ◽  
...  

Maf1, a key repressor of RNA polymerase III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show for the first time that Maf1 plays a critical role in the regulation of osteoblast differentiation and bone mass. A high bone mass phenotype was noted in mice with global deletion of Maf1 (Maf1-/- mice), as well as paradoxically, in mice that overexpressed MAF1 in cells of the osteoblast lineage (Prx-Cre;LSL-Maf1 mice). Osteoblasts isolated from Maf1-/- mice unexpectedly showed reduced osteoblastogenesis ex vivo. Prx-Cre;LSL-Maf1 mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to the confounding effects of the global absence of MAF1 in Maf1-/- mice. Expectedly, MAF1 overexpression promoted osteoblast differentiation and shRNA-mediated Maf1 downregulation inhibited differentiation of ST2 cells, indicating an overall positive action of Maf1 on osteoblast formation. We also found that, in contrast to MAF1 overexpression, other perturbations that repress RNA pol III transcription, including Brf1 knockdown and the chemical inhibition of RNA pol III by ML-60218, paradoxically inhibited osteoblast differentiation. RNA-seq was used to determine the basis for these opposing actions. The three modalities used to perturb RNA pol III transcription resulted in distinct changes gene expression, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 overexpression in ST2 cells induced genes known to promote osteoblast differentiation. A subset of these genes was altered in an opposite manner with Brf1 downregulation or treatment with ML-60218, both of which also inhibit RNA pol III-mediated transcription. All these perturbations, however, enhanced adipogenesis in ST2 cell cultures. Furthermore, codon bias was observed in a subset of genes expressed during osteoblast differentiation. Together, these results reveal a novel role for Maf1 and RNA pol III-mediated transcription in osteoblast fate determination and differentiation and bone mass regulation.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Nick Clough ◽  
Justin Williams ◽  
Uma Sankar

Background and Hypothesis:   The Ca+2/calmodulin (CaM)-mediated protein kinase kinase 2 (CaMKK2) is a multi-functional kinase with effects on cell proliferation, differentiation and metabolism. The role of CaMKK2 in bone has been explored with its ablation favoring osteoblasts to osteoclasts and bone mass accrual as observed in Camkk2-/- mice, or following its inhibition by STO-609. One outstanding question is whether the anabolic effects of CaMKK2 are bone-cell intrinsic. While analyzing mice harboring bone-cell specific deletion of CaMKK2, we observed a high bone mass phenotype when the kinase is deleted from osteocytes, the most abundant cells within the bone. We therefore hypothesized that the loss of CaMKK2 enhances osteocyte differentiation.  Experimental Design or Project Methods:  We used two osteocyte cell lines MLO-Y4 and MLO-A5, both generated from mice expressing the immortalizing T-antigen, to test our hypothesis. The MLO-A5 line has post-osteoblast/pre-osteocyte characteristics while the MLO-Y4 line has mature osteocyte characteristics. CaMKK2 expression was silenced in MLO-A5 cells using Lentiviruses encoding CaMKK2 short hairpin (sh) RNA constructs. STO-609 was employed to inhibit CaMKK2 in the MLO-Y4 line as it proved resistant to transfection. Immunoblotting was used to verify CaMKK2 silencing/inhibition. Comparisons on cell morphologies were observed using immunofluorescence. As osteocytes are defined by dendritic morphology, the number of dendritic processes were analyzed. Additionally, the differences in the expression of the osteocyte markers SOST, E11 and DMP1 were examined by qRT-PCR.  Results:  To be finalized.  Conclusion and Potential Impact:  Overall, our studies will provide more information towards understanding the role of CaMKK2 in bone biology and aid its development as a therapeutic target in the treatment of osteoporosis.


2018 ◽  
Vol 497 (2) ◽  
pp. 659-666
Author(s):  
Timur Yorgan ◽  
Jean-Pierre David ◽  
Michael Amling ◽  
Thorsten Schinke

2017 ◽  
Vol 102 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Michelle M. McDonald ◽  
Alyson Morse ◽  
Aaron Schindeler ◽  
Kathy Mikulec ◽  
Lauren Peacock ◽  
...  

2017 ◽  
Vol 59 (4) ◽  
pp. 351-363 ◽  
Author(s):  
Alexander Kot ◽  
Zhendong A Zhong ◽  
Hongliang Zhang ◽  
Yu-An Evan Lay ◽  
Nancy E Lane ◽  
...  

Increasing peak bone mass is a promising strategy to prevent osteoporosis. A mouse model of global progesterone receptor (PR) ablation showed increased bone mass through a sex-dependent mechanism. Cre-Lox recombination was used to generate a mouse model of osteoprogenitor-specific PR inactivation, which recapitulated the high bone mass phenotype seen in the PR global knockout mouse mode. In this work, we employed RNA sequencing analysis to evaluate sex-independent and sex-dependent differences in gene transcription of osteoprogenitors of wild-type and PR conditional knockout mice. PR deletion caused marked sex hormone-dependent changes in gene transcription in male mice as compared to wild-type controls. These transcriptional differences revealed dysregulation in pathways involving immunomodulation, osteoclasts, bone anabolism, extracellular matrix interaction and matrix interaction. These results identified many potential mechanisms that may explain our observed high bone mass phenotype with sex differences when PR was selectively deleted in the MSCs.


Bone ◽  
2016 ◽  
Vol 87 ◽  
pp. 114-119 ◽  
Author(s):  
M. Raygorodskaya ◽  
Y. Gabet ◽  
C. Shochat ◽  
E. Kobyliansky ◽  
A. Torchinsky ◽  
...  

2015 ◽  
Vol 113 (1) ◽  
pp. 164-169 ◽  
Author(s):  
Li Sun ◽  
Roberto Tamma ◽  
Tony Yuen ◽  
Graziana Colaianni ◽  
Yaoting Ji ◽  
...  

Prior studies show that oxytocin (Oxt) and vasopressin (Avp) have opposing actions on the skeleton exerted through high-affinity G protein-coupled receptors. We explored whether Avp and Oxtr can share their receptors in the regulation of bone formation by osteoblasts. We show that the Avp receptor 1α (Avpr1α) and the Oxt receptor (Oxtr) have opposing effects on bone mass: Oxtr−/− mice have osteopenia, and Avpr1α−/− mice display a high bone mass phenotype. More notably, this high bone mass phenotype is reversed by the deletion of Oxtr in Oxtr−/−:Avpr1α−/− double-mutant mice. However, although Oxtr is not indispensable for Avp action in inhibiting osteoblastogenesis and gene expression, Avp-stimulated gene expression is inhibited when the Oxtr is deleted in Avpr1α−/− cells. In contrast, Oxt does not interact with Avprs in vivo in a model of lactation-induced bone loss in which Oxt levels are high. Immunofluorescence microscopy of isolated nucleoplasts and Western blotting and MALDI-TOF of nuclear extracts show that Avp triggers Avpr1α localization to the nucleus. Finally, a specific Avpr2 inhibitor, tolvaptan, does not affect bone formation or bone mass, suggesting that Avpr2, which primarily functions in the kidney, does not have a significant role in bone remodeling.


Sign in / Sign up

Export Citation Format

Share Document