BTN3A2 serves as a prognostic marker and favors immune infiltration in triple‐negative breast cancer

2019 ◽  
Vol 121 (3) ◽  
pp. 2643-2654 ◽  
Author(s):  
Peian Cai ◽  
Zhenhui Lu ◽  
Jianjun Wu ◽  
Xiong Qin ◽  
Zetao Wang ◽  
...  
2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Milica Nedeljković ◽  
Nikola Tanić ◽  
Tatjana Dramićanin ◽  
Zorka Milovanović ◽  
Snežana Šušnjar ◽  
...  

Summary Background: Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. Methods: FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. Results: 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. Conclusions: We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.


Oncotarget ◽  
2017 ◽  
Vol 8 (23) ◽  
pp. 37172-37185 ◽  
Author(s):  
Antonia K. Roseweir ◽  
Pamela McCall ◽  
Alison Scott ◽  
Benjamin Liew ◽  
Zhi Lim ◽  
...  

2015 ◽  
Vol 12 (103) ◽  
pp. 20141153 ◽  
Author(s):  
Yinyin Yuan

Lymphocytic infiltration is associated with a favourable prognosis and predicts response to chemotherapy in many cancer types, including the aggressive triple-negative breast cancer (TNBC). However, it is not well understood owing to the high levels of spatial heterogeneity within tumours, which is difficult to analyse by traditional pathological assessment. This paper describes an unbiased methodology to statistically model the spatial distribution of lymphocytes among tumour cells based on automated analysis of haematoxylin-and-eosin-stained whole-tumour section images, which is applied to two independent TNBC cohorts of 181 patients with matched microarray gene expression data. The novelty of the proposed methodology is the fusion of image analysis and statistical modelling for an integrative understanding of intratumour heterogeneity of lymphocytic infiltration. Using this methodology, a quantitative measure of intratumour lymphocyte ratio is developed and found to be significantly associated with disease-specific survival in both TNBC cohorts independent to standard clinical parameters. The proposed image-based measure compares favourably to a number of gene expression signatures of immune infiltration. In addition, heterogeneous immune infiltration at the morphological level is reflected at the molecular scale and correlated with increased expression of CTLA4 , the target of ipilimumab. Taken together, these results support the fusion of high-throughput image analysis and statistical modelling to offer reproducible and robust biomarkers for the objective identification of patients with poor prognosis and treatment options.


2019 ◽  
Vol 38 (1) ◽  
pp. 63-70
Author(s):  
Milica Nedeljković ◽  
Nikola Tanić ◽  
Tatjana Dramićanin ◽  
Zorka Milovanović ◽  
Snežana Šušnjar ◽  
...  

Summary Background: Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. Methods: FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. Results: 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. Conclusions: We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.


Sign in / Sign up

Export Citation Format

Share Document