Meldonium improves Huntington’s disease mitochondrial dysfunction by restoring peroxisome proliferator‐activated receptor γ coactivator 1α expression

2018 ◽  
Vol 234 (6) ◽  
pp. 9233-9246 ◽  
Author(s):  
Francesca Di Cristo ◽  
Mauro Finicelli ◽  
Filomena Anna Digilio ◽  
Simona Paladino ◽  
Anna Valentino ◽  
...  
2011 ◽  
Vol 8 (6) ◽  
pp. 496-503 ◽  
Author(s):  
Ashu Johri ◽  
Anatoly A. Starkov ◽  
Abhishek Chandra ◽  
Thomas Hennessey ◽  
Abhijeet Sharma ◽  
...  

2010 ◽  
Vol 19 (20) ◽  
pp. 4043-4058 ◽  
Author(s):  
Ming-Chang Chiang ◽  
Chiung-Mei Chen ◽  
Maw-Rong Lee ◽  
Hsiao-Wen Chen ◽  
Hui-Mei Chen ◽  
...  

2020 ◽  
Vol 27 ◽  
Author(s):  
Aleksandra Pogoda ◽  
Natalia Chmielewska ◽  
Piotr Maciejak ◽  
Janusz Szyndler

: Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the gene that encodes a critical cell regulatory protein, huntingtin (Htt). The expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats causes improper folding of functional proteins and is an initial trigger of pathological changes in the brain. Recent research has indicated that the functional dysregulation of many transcription factors underlies the neurodegenerative processes that accompany HD. These disturbances are caused not only by the loss of wild-type Htt (WT Htt) function but also by the occurrence of abnormalities that result from the action of mutant Htt (mHtt). In this review, we aim to describe the role of transcription factors that are currently thought to be strongly associated with HD pathogenesis, namely, RE1-silencing transcription factor, also known as neuron-restrictive silencer factor (REST/NRSF), forkhead box proteins (FOXPs), peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1α), heat shock transcription factor 1 (HSF1), and nuclear factor κ light-chain-enhancer of activated B cells (NF-κB). We also take into account the role of these factors in the phenotype of HD as well as potential pharmacological interventions targeting the analyzed proteins. Furthermore, we considered whether molecular manipulation resulting in changes in transcription factor function may have clinical potency for treating HD.


2021 ◽  
Vol 22 ◽  
Author(s):  
Aditi Sharma ◽  
Tapan Behl ◽  
Lalit Sharma ◽  
Lotfi Aelya ◽  
Simona Bungau

: Huntington’s disease (HD) is prototypical neurodegenerative disease, preferentially disrupts the neurons of striatum and cor-tex. Progressive motor dysfunctions, psychiatric disturbances, behavioural impairments and cognitive decline are the clinical symptoms of HD progression. The disease occurs due to, expanded CAG repeats in exon 1 of huntingtin protein (mHtt) causing its aggregation. Multiple cellular and molecular pathways are involved in the HD pathology. Mitochondria as vital organelles has an important role in most of the neurodegenerative diseases like HD. Over the years, the role of mitochondria in neurons are highly diverged, it not only contribute as cell power source, but as a dynamic organelles it fragments and then fuse to attain a maximal bioenergetics performance, regulate intracellular calcium homeostasis, reactive oxygen species (ROS) generation, antioxidant activity and involved in apoptotic pathways. Indeed, these events are seen to be affected in HD, resulting in neuronal dysfunction in pre-symptomatic stages. mHtt causes critical transcriptional abnormality by altering the expression of a master co-regulator, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), leading to increased susceptibility to oxidative stress and neuronal degeneration. Moreover, mHtt influences multiple cellular signal-ling events which ends with mitochondrial biogenesis. Here, we resume recent findings that pose mitochondria as an im-portant regulatory organelle in HD and how mHtt affects mitochondrial function, trafficking and homeostasis and makes neurons prone to degeneration. In addition, we also uncover the mitochondrial based potential targets and therapeutic ap-proaches with imminent or currently ongoing clinical trials.


2021 ◽  
Vol 22 (2) ◽  
pp. 934
Author(s):  
Woon-Man Kung ◽  
Muh-Shi Lin

Proinflammatory response and mitochondrial dysfunction are related to the pathogenesis of neurodegenerative diseases (NDs). Nuclear factor κB (NFκB) activation has been shown to exaggerate proinflammation and mitochondrial dysfunction, which underlies NDs. CDGSH iron-sulfur domain 2 (CISD2) has been shown to be associated with peroxisome proliferator-activated receptor-β (PPAR-β) to compete for NFκB and antagonize the two aforementioned NFκB-provoked pathogeneses. Therefore, CISD2-based strategies hold promise in the treatment of NDs. CISD2 protein belongs to the human NEET protein family and is encoded by the CISD2 gene (located at 4q24 in humans). In CISD2, the [2Fe-2S] cluster, through coordinates of 3-cysteine-1-histidine on the CDGSH domain, acts as a homeostasis regulator under environmental stress through the transfer of electrons or iron-sulfur clusters. Here, we have summarized the features of CISD2 in genetics and clinics, briefly outlined the role of CISD2 as a key physiological regulator, and presented modalities to increase CISD2 activity, including biomedical engineering or pharmacological management. Strategies to increase CISD2 activity can be beneficial for the prevention of inflammation and mitochondrial dysfunction, and thus, they can be applied in the management of NDs.


2020 ◽  
Author(s):  
jie liang ◽  
xue zhou ◽  
jiang wang ◽  
zhaoyang fei ◽  
guangcheng qin ◽  
...  

Abstract Background: The mechanism of chronic migraine (CM) is still unclear and mitochondrial dysfunction plays a possible role in migraine pathophysiology. Silent information regulator 1 (SIRT1) plays a vital role in mitochondrial dysfunction in many diseases, but there is no information about SIRT1 in CM.The aim of this study was to explore the role of SIRT1 in mitochondrial dysfunction in CM. Methods: A rat model was established through repeated dural infusions of inflammatory soup (IS) for seven days to simulate CM attacks. Cutaneous hyperalgesia caused by the repeated infusions of IS was detected using the von Frey test. Then, we detected SIRT1 expression in the trigeminal nucleus caudalis (TNC). To explore the effect of SIRT1 on mitochondrial dysfunction in CM rats, we examined whether SRT1720, an activator of SIRT1, altered mitochondrial dysfunction in CM rats. Results: Repeated infusions of IS resulted in cutaneous hyperalgesia accompanied bydownregulation of SIRT1.SRT1720 significantly alleviated the cutaneous hyperalgesia induced by repeated infusions of IS. Furthermore, activation of SIRT1 markedly increased the expression of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha(PGC-1α), transcription factor A (TFAM), nuclear respiratory factor 1 (NRF-1), and nuclear respiratory factor 2(NRF-2) mitochondrial DNA (mtDNA) and increased the ATP content and mitochondrial membrane potential. Conclusions :Our results indicate that SIRT1 may have an effect on mitochondrial dysfunction in CM rats. Activation of SIRT1 has a protective effect on mitochondrial function in CM rats.


Sign in / Sign up

Export Citation Format

Share Document